Best riddles for teens

logiccleansimplestory

A guard is stationed at the entrance to a bridge. He is tasked to shoot anyone who tries to cross to the other side of the bridge, and to turn away anyone who comes in from the opposite side of the bridge. You are on his side of the bridge and want to escape to the other side. Because the bridge is old and rickety, anyone who tries to cross it does so at a constant speed, and it always takes exactly 10 minutes to cross. The guard comes out of his post every 6 minutes and looks down the bridge for any people trying to leave, and at all other times he sits in his post and snoozes. You know you can sneak past him when he's sleeping, but the problem is that you won't be able to make it all the way to the other side of the bridge before he sees you (since he comes out every 6 minutes, but it takes 10 minutes to cross). One day a brilliant idea comes to you, and soon you've successfully crossed to the other side of the bridge without being shot. How did you do it?
Right after the guard goes back to his post after checking the bridge, you sneak by and make your way down the bridge. After a little bit less than 6 minutes, you turn around and start walking back toward the guard. He will come out and see you, and assume that you are a visitor coming from the other side of the bridge, since you're only about 4 minutes from the end of the other side of the bridge. He will go back into his post since he doesn't plan to turn you away until you reach him, and then you turn back around and make your way the rest of the way to the other side of the bridge.
74.55 %
94 votes
logictricky

John Heysham Gibbon was most renowned surgeon of 1940-1970. More than 90% of his surgeries he performed are highly successful and still almost all of his patients die.
The surgery was performed way back, by now approx 90% of them have died by old age.
74.54 %
66 votes
logicmathstory

A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant. The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest. How can the swan succesfully escape?
Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference). From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore. The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed. The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run: [0.75R feet + 1 millimeter] * 4 < R*pi [This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.] Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.
74.54 %
66 votes
logicmathtrickystoryclever

Three people check into a hotel room. The bill is $30 so they each pay $10. After they go to the room, the hotel's cashier realizes that the bill should have only been $25. So he gives $5 to the bellhop and tells him to return the money to the guests. The bellhop notices that $5 can't be split evenly between the three guests, so he keeps $2 for himself and then gives the other $3 to the guests. Now the guests, with their dollars back, have each paid $9 for a total of $27. And the bellhop has pocketed $2. So there is $27 + $2 = $29 accounted for. But the guests originally paid $30. What happened to the other dollar?
This riddle is just an example of misdirection. It is actually nonsensical to add $27 + $2, because the $27 that has been paid includes the $2 the bellhop made. The correct math is to say that the guests paid $27, and the bellhop took $2, which, if given back to the guests, would bring them to their correct payment of $27 - $2 = $25.
74.54 %
66 votes
logicmathcleanclever

On the first day they cover one quarter of the total distance. The next day they cover one quarter of what is left. The following day they cover two fifths of the remainder and on the fourth day half of the remaining distance. The group now have 14 miles left, how many miles have they walked?
68.962962 miles
74.54 %
66 votes
cleanlogicsimple

Two men are in a desert. They're both wearing backpacks. One of the men is dead. The man who is alive, has his pack open. The dead man's pack is closed. What is in their packs?
A parachute.
74.51 %
80 votes