logicmathshortIs half of two plus two equal to two or three?

Three. It seems that it could almost be either, but if you follow the mathematical orders of operation, division is performed before addition. So... half of two is one. Then add two, and the answer is three.

logicmathYou can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square.
But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board.
Can you explain why tiling this board isn't possible?

Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square.
Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.

logicmathprobabilityYou have a basket of infinite size (meaning it can hold an infinite number of objects). You also have an infinite number of balls, each with a different number on it, starting at 1 and going up (1, 2, 3, etc...).
A genie suddenly appears and proposes a game that will take exactly one minute. The game is as follows: The genie will start timing 1 minute on his stopwatch. Where there is 1/2 a minute remaining in the game, he'll put balls 1, 2, and 3 into the basket. At the exact same moment, you will grab a ball out of the basket (which could be one of the balls he just put in, or any ball that is already in the basket) and throw it away.
Then when 3/4 of the minute has passed, he'll put in balls 4, 5, and 6, and again, you'll take a ball out and throw it away.
Similarly, at 7/8 of a minute, he'll put in balls 7, 8, and 9, and you'll take out and throw away one ball.
Similarly, at 15/16 of a minute, he'll put in balls 10, 11, and 12, and you'll take out and throw away one ball.
And so on....After the minute is up, the genie will have put in an infinite number of balls, and you'll have thrown away an infinite number of balls.
Assume that you pull out a ball at the exact same time the genie puts in 3 balls, and that the amount of time this takes is infinitesimally small.
You are allowed to choose each ball that you pull out as the game progresses (for example, you could choose to always pull out the ball that is divisible by 3, which would be 3, then 6, then 9, and so on...).
You play the game, and after the minute is up, you note that there are an infinite number of balls in the basket.
The next day you tell your friend about the game you played with the genie. "That's weird," your friend says. "I played the exact same game with the genie yesterday, except that at the end of my game there were 0 balls left in the basket."
How is it possible that you could end up with these two different results?

Your strategy for choosing which ball to throw away could have been one of many. One such strategy that would leave an infinite number of balls in the basket at the end of the game is to always choose the ball that is divisible by 3 (so 3, then 6, then 9, and so on...). Thus, at the end of the game, any ball of the format 3n+1 (i.e. 1, 4, 7, etc...), or of the format 3n+2 (i.e. 2, 5, 8, etc...) would still be in the basket. Since there will be an infinite number of such balls that the genie has put in, there will be an infinite number of balls in the basket.
Your friend could have had a number of strategies for leaving 0 balls in the basket. Any strategy that guarantees that every ball n will be removed after an infinite number of removals will result in 0 balls in the basket.
One such strategy is to always choose the lowest-numbered ball in the basket. So first 1, then 2, then 3, and so on. This will result in an empty basket at the game's end. To see this, assume that there is some ball in the basket at the end of the game. This ball must have some number n. But we know this ball was thrown out after the n-th round of throwing balls away, so it couldn't be in there. This contradiction shows that there couldn't be any balls left in the basket at the end of the game.
An interesting aside is that your friend could have also used the strategy of choosing a ball at random to throw away, and this would have resulted in an empty basket at the end of the game. This is because after an infinite number of balls being thrown away, the probability of any given ball being thrown away reaches 100% when they are chosen at random.

cleanlogicmathHow can you take 2 from 5 and leave 4?

F I V E. Remove the 2 letters F and E from five and you have IV.

cleanlogicshortWhat belongs to you but others use it more than you do?

Your name.

animallogicA frog is at the bottom of a well. It is a 30 foot climb to get out. Each morning, the frog jumps 3 feet up the path out, but each night, as it sleeps, it slips back 2 feet down.
Thus, at the beginning of the first day, the frog has 30 feet to go, at the beginning of the second day it has 29 feet to go, and so on.
How many days does it take the frog to get out of the well?

It takes 28 days for the frog to get out (it gets out on the morning of the 28th day).
This is because on the beginning of the 28th day, the frog has 3 feet left to travel. Because the frog jumps 3 feet forward each morning, it will jump out of the well on this day.

cleanfunnylogicA woman with no driver license goes the wrong way on a one-way street and turns left at a corner with a no left turn sign. A policeman sees her but does nothing... Why?

She is walking.

cleanloveThis word is a favorite of girls. Boys are unnerved on the mention of it. Once love finds its accompaniment, it becomes a lifelong event. What is it?

Forever.

logicmathshortHow many times can you subtract 5 from 25?

Just once, because after you subtract anything from it, it's not 25 anymore.

cleanfunnylogicshortCan you name three consecutive days without using the words Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday

Yesterday, Today, and Tomorrow.