A new student met the Zen Master after traveling hundreds of miles by yak cart. He was understandably pleased with himself for being selected to learn at the great master's feet .
The first time they formally met, the Zen Master asked, "May I ask you a simple question?" "It would be an honor!" replied the student.
"Which is greater, that which has no beginning or that which has no end?" queried the Zen Master. "Come back when you have the answer and can explain why."
After the student made many frustrated trips back with answers which the master quickly cast off with a disapproving negative nod, the Zen Master finally said, "Perhaps I should ask you another question?"
"Oh, please do!" pleaded the exasperated student.
The Zen Master then asked, "Since you do not know that, answer this much simpler riddle. When can a pebble hold back the sea?" Again the student was rebuffed time and again. Several more questions followed with the same result. Each time, the student could not find the correct answer. Finally, completely exasperated, the student began to weep, "Master, I am a complete idiot. I can not solve even the simplest riddle from you!"
Suddenly, the student stopped, sat down, and said, "I am ready for my second lesson."
What was the Zen Master's first lesson?

The student's first lesson was that in order to learn from the Zen Master, the student should be asking the questions and not the Zen Master.

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started.
It turns out there are an infinite number of different points on earth where you might be. Can you describe them all?
It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.

One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile.
To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes.
To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.

The owner of a banana plantation has a camel. He wants to transport his 3000 bananas to the market, which is located after the desert. The distance between his banana plantation and the market is about 1000 kilometer. So he decided to take his camel to carry the bananas. The camel can carry at the maximum of 1000 bananas at a time, and it eats one banana for every kilometer it travels.
What is the most bananas you can bring over to your destination?

First of all, the brute-force approach does not work. If the Camel starts by picking up the 1000 bananas and try to reach point B, then he will eat up all the 1000 bananas on the way and there will be no bananas left for him to return to point A.
So we have to take an approach that the Camel drops the bananas in between and then returns to point A to pick up bananas again.
Since there are 3000 bananas and the Camel can only carry 1000 bananas, he will have to make 3 trips to carry them all to any point in between.
When bananas are reduced to 2000 then the Camel can shift them to another point in 2 trips and when the number of bananas left are <= 1000, then he should not return and only move forward.
In the first part, P1, to shift the bananas by 1Km, the Camel will have to
Move forward with 1000 bananas – Will eat up 1 banana in the way forward
Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back
Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward
Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back
Will carry the last 1000 bananas from point a and move forward – will eat up 1 banana
Note: After point 5 the Camel does not need to return to point A again.
So to shift 3000 bananas by 1km, the Camel will eat up 5 bananas.
After moving to 200 km the Camel would have eaten up 1000 bananas and is now left with 2000 bananas.
Now in the Part P2, the Camel needs to do the following to shift the Bananas by 1km.
Move forward with 1000 bananas – Will eat up 1 banana in the way forward
Leave 998 banana after 1 km and return with 1 banana – will eat up this 1 banana in the way back
Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward
Note: After point 3 the Camel does not need to return to the starting point of P2.
So to shift 2000 bananas by 1km, the Camel will eat up 3 bananas.
After moving to 333 km the camel would have eaten up 1000 bananas and is now left with the last 1000 bananas.
The Camel will actually be able to cover 333.33 km, I have ignored the decimal part because it will not make a difference in this example.
Hence the length of part P2 is 333 Km.
Now, for the last part, P3, the Camel only has to move forward. He has already covered 533 (200+333) out of 1000 km in Parts P1 & P2. Now he has to cover only 467 km and he has 1000 bananas.
He will eat up 467 bananas on the way forward, and at point B the Camel will be left with only 533 Bananas.

A woman who lived in Germany during World War II wanted to cross the German/Swiss border in order to escape Nazi pursuers. The bridge which she is to cross is a half mile across, over a large canyon. Every three minutes a guard comes out of his bunker and checks if anyone is on the bridge. If a person is caught trying to escape German side to the Swiss side they are shot. If caught crossing the other direction without papers they are sent back. She knows that it takes at least five minutes to cross the bridge, in which time the guard will see her crossing and shoot her. How does she get across?

She waits until the guard goes inside his hunt, and begins to walk across the bridge. She gets a little more than half way, turns around, and begins to walk toward the german side once more. The guard comes out, sees that she has no papers, and sends her "back" to the swiss side.

One day a really rich old man with two sons died. In his will he said that he would give one of his sons all of his fortune. He gave each of his sons a horse and said they would compete in a horse race from Los Angeles to Sacramento, but the son whose horse came in second would get the money.
So one day they started the race. After one whole day they had only ridden one mile. At night they decided they should stop at a hotel. While they were booking in they told their problem to the wise old clerk, who made a suggestion. The next day the two brothers rode as fast as they could. What did the clerk suggest that they do?

The clerk told them to swap horses. The father said that whoever's horse crossed the finish line second would get the money. He didn't say that the owner of the horse had to be on it.

This teaser is based on a weird but true story from a few years ago. A complaint was received by the president of a major car company: "This is the fourth time I have written you, and I don't blame you for not answering me because I must sound crazy, but it is a fact that we have a tradition in our family of having ice cream for dessert after dinner each night. Every night after we've eaten, the family votes on which flavor of ice cream we should have and I drive down to the store to get it. I recently purchased a new Pantsmobile from your company and since then my trips to the store have created a problem. You see, every time I buy vanilla ice cream my car won't start. If I get any other kind of ice cream the car starts just fine. I want you to know I'm serious about this question, no matter how silly it sounds: 'What is there about a Pantsmobile that makes it not start when I get vanilla ice cream, and easy to start whenever I get any other kind?'"
The Pantsmobile company President was understandably skeptical about the letter, but he sent an engineer to check it out anyway. He had arranged to meet the man just after dinner time, so the two hopped into the car and drove to the grocery store. The man bought vanilla ice cream that night and, sure enough, after they came back to the car it wouldn't start for several minutes. The engineer returned for three more nights. The first night, the man got chocolate. The car started right away. The second night, he got strawberry and again the car started right up. The third night he bought vanilla and the car failed to start. There was a logical reason why the man's car wouldn't start when he bought vanilla ice cream. What was it?
The man lived in an extremely hot city, and this took place during the summer. Also, the layout of the grocery store was such that it took the man less time to buy vanilla ice cream.

Vanilla ice cream was the most popular flavor and was on display in a little case near the express check out, while the other flavors were in the back of the store and took more time to select and check out. This mattered because the man's car was experiencing vapor lock, which is excess heat boiling the fuel in the fuel line and the resulting air bubbles blocking the flow of fuel until the car has enough time to cool.. When the car was running there was enough pressure to move the bubbles along, but not when the car was trying to start.

A duke was hunting in the forest with his men-at-arms and servants when he came across a tree.
Upon it, archery targets were painted and smack in the middle of each was an arrow.
"Who is this incredibly fine archer?" cried the duke. "I must find him!"
After continuing through the forest for a few miles he came across a small boy carrying a bow and arrow.
Eventually the boy admitted that it was he who shot the arrows plumb in the center of all the targets.
"You didn't just walk up to the targets and hammer the arrows into the middle, did you?" asked the duke worriedly.
"No my lord. I shot them from a hundred paces. I swear it by all that I hold holy."
"That is truly astonishing," said the duke. "I hereby admit you into my service."
The boy thanked him profusely.
"But I must ask one favor in return," the duke continued.
"You must tell me how you came to be such an outstanding shot."
How'd he get to be such a good shot?

The boy shot the arrow, then painted the circle around it.

Two Japanese people who have never seen each other meet at the New York Japanese Embassy. They decide to have drinks together at a nearby bar. One of them is the father of the other one's son. How is this possible?

The Japanese are husband and wife and both blind since birth.

A wise man lived on a hill above a small town. The townspeople often approached him to solve their difficult problems and riddles. One day, two lads decided to fool him. They took a dove and set off up the hill. Standing before him, one of the lads said "Tell me, wise man, is the dove I hold behind my back dead or alive?" The man smiled and said "I cannot answer your question correctly". Even though the wise man knew the condition of the dove, why wouldn't he state whether it was dead or alive?

The man told the two lads, "If I say the dove is alive, you will the bird and show me that it is dead. If I say that it is dead, you will release the dove and it will fly away. So you see I cannot answer your question.
Search: Schrödinger's cat

After recent events, Question Mark is annoyed with his brother, Skid Mark. Skid thought it would be funny to hide Question's wallet. He told Question that he would get it back if he finds it. So, first off, Skid laid five colored keys in a row. One of them is a key to a room where Skid is hiding Question's wallet. Using the clues, can you determine the order of the keys and which is the right key?
Red: This key is somewhere to the left of the key to the door.
Blue: This key is not at one of the ends.
Green: This key is three spaces away from the key to the door (2 between).
Yellow: This key is next to the key to the door.
Orange: This key is in the middle.

The order (from left to right) is Green, Red, Orange, Blue, Yellow. The blue key is the key to the door.