Story riddles

logicmathstorycleaninterview

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
70.38 %
80 votes
logicmathstory

A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant. The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest. How can the swan succesfully escape?
Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference). From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore. The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed. The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run: [0.75R feet + 1 millimeter] * 4 < R*pi [This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.] Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.
70.36 %
76 votes
logiccleverstory

Many years ago a wealthy old man was near death. He wished to leave his fortune to one of his three children. The old man wanted to know that his fortune would be in wise hands. He stipulated that his estate would be left to the child who would sing him half as many songs as days that he had left to live.The eldest son said he couldn't comply because he didn't know how many days his father had left to live and besides he was too busy. The youngest son said the same thing. The man ended up leaving his money to his third child a daughter. What did his daughter do?
Every other day, the daughter sang her father a song.
70.35 %
130 votes
funnystory

A hobo had just been kicked off the train by one of the bosses. As he made his way down a dusty side road, he noticed a saffron robed man sitting next to a campfire apparently deep in thought. A wonderful smelling stew was bubbling in a pot next to him. It had been a full day since the hobo's last meal, so he went over to the man and tapped him on the shoulder. "I see by your robes that you are some kind of holy man," said the hobo. The Zen Master turned to the hobo and said, "You speak the truth." The hobo spoke, "I would sure like to try the stew you have on the campfire there; perhaps if I could tell you something to increase your wisdom, you will agree to share your meal." The Zen Master turned to the hobo and said, "Please, you are welcome to share my meal because you have already increased my wisdom!" What had the Zen Master learned from the hobo to increase his wisdom?
The Zen Master learned that he should find a more privace place to meditate if he doesn't want to be interrupted by every vagabond that happens by.
69.61 %
74 votes
simplecleanstory

Four cars come to a four way stop, all coming from a different direction. They can't decide who got there first, so they all entered the intersection at the same time. They do not crash into each other. How is this possible?
They all made right hand turns.
69.31 %
118 votes
cleanlogicmysterystory

A man owned a casino and invited some friends. It was a dark stormy night, and they all placed their money on the table right before the lights went out. When the lights came back on, the money was gone. The owner put a rooster in an old rusty tea kettle. He told everyone to get in line and touch the kettle after he turned the lights off, and the rooster will crow when the robber touched it. After everyone touched it, the rooster didn't crow, so the man told everyone to hold out their hands. After examining all the hands, he pointed out who the robber was. How did he know who stole the money?
Because the tea kettle was rusty, whoever touched it would have rust on their hands. The robber didn't touch the kettle, therefore he was the only one whose hands weren't rusty.
69.26 %
771 votes
logicmysterydetectivestory

A dead body is found at the bottom of a multistory building. Seeing the position of the body, it is evident that the person jumped from one of the floors, committing suicide. A homicide detective is called to look after the case. He goes to the first floor and walks in the room facing the direction in which the body was found. He opens the window in that direction and flips a coin towards the floor. Then he goes to the second floor and repeats the process. He keeps on doing this until he reaches the last floor. Then, when he climbs down he tells the team that it is a murder not suicide. How did he come to know that it was a murder?
None of the windows were left open. If the person jumped, who closed the window?
68.88 %
899 votes
mathcleansimplelogicstory

Farmer Brown came to town with some watermelons. He sold half of them plus half a melon and found that he had one whole melon left. How many melons did he take to town?
Easy, three melons.
68.83 %
72 votes
logicstorymath

You are standing in a house in the middle of the countryside. There is a small hole in one of the interior walls of the house, through which 100 identical wires are protruding. From this hole, the wires run underground all the way to a small shed exactly 1 mile away from the house, and are protruding from one of the shed's walls so that they are accessible from inside the shed. The ends of the wires coming out of the house wall each have a small tag on them, labeled with each number from 1 to 100 (so one of the wires is labeled "1", one is labeled "2", and so on, all the way through "100"). Your task is to label the ends of the wires protruding from the shed wall with the same number as the other end of the wire from the house (so, for example, the wire with its end labeled "47" in the house should have its other end in the shed labeled "47" as well). To help you label the ends of the wires in the shed, there are an unlimited supply of batteries in the house, and a single lightbulb in the shed. The way it works is that in the house, you can take any two wires and attach them to a single battery. If you then go to the shed and touch those two wires to the lightbulb, it will light up. The lightbulb will only light up if you touch it to two wires that are attached to the same battery. You can use as many of the batteries as you want, but you cannot attach any given wire to more than one battery at a time. Also, you cannot attach more than two wires to a given battery at one time. (Basically, each battery you use will have exactly two wires attached to it). Note that you don't have to attach all of the wires to batteries if you don't want to. Your goal, starting in the house, is to travel as little distance as possible in order to label all of the wires in the shed. You tell a few friends about the task at hand. "That will require you to travel 15 miles!" of of them exclaims. "Pish posh," yells another. "You'll only have to travel 5 miles!" "That's nonsense," a third replies. "You can do it in 3 miles!" Which of your friends is correct? And what strategy would you use to travel that number of miles to label all of the wires in the shed?
Believe it or not, you can do it travelling only 3 miles! The answer is rather elegant. Starting from the house, don't attach wires 1 and 2 to any batteries, but for the remaining wires, attach them in consecutive pairs to batteries (so attach wires 3 and 4 to the same battery, attach wires 5 and 6 to the same battery, and so on all the way through wires 99 and 100). Now travel 1 mile to the shed, and using the lightbulb, find all pairs of wires that light it up. Put a rubberband around each pair or wires that light up the lightbulb. The two wires that don't light up any lightbulbs are wires 1 and 2 (though you don't know yet which one of them is wire 1 and which is wire 2). Put a rubberband around this pair of wires as well, but mark it so you remember that they are wires 1 and 2. Now go 1 mile back to the house, and attach odd-numbered wires to batteries in the following pairs: (1 and 3), (5 and 7), (9 and 11), and so on, all the way through (97 and 99). Similarly, attach even-numbered wires to batteries in the following pairs: (4 and 6), (8 and 10), (12 and 14), and so on, all the way through (96 and 98). Note that in this round, we didn't attach wire 2 or wire 100 to any batteries. Finally, travel 1 mile back to the shed. You're now in a position to label all of the wires here. First, remember we know the pair of wires that are, collectively, wires 1 and 2. So test wires 1 and 2 with all the other wires to see what pair lights up the lightbulb. The wire from wires 1 and 2 that doesn't light up the bulb is wire 2 (which, remember, we didn't connect to a battery), and the other is wire 1, so we can label these as such. Furthermore, the wire that, with wire 1, lights up a lightbulb, is wire 3 (remember how we connected the wires this round). Now, the other wire in the rubber band with wire 3 is wire 4 (we know this from the first round), and the wire that, with wire 4, lights up the lightbulb, is wire 6 (again, because of how we connected the wires to batteries this round). We can continue labeling batteries this way (next we'll label wire 7, which is rubber-banded to wire 6, and then we'll label wire 9, which lights up the lightbulb with wire 7, and so on). At the end, we'll label wire 97, and then wire 99 (which lights up the lightbulb with wire 97), and finally wire 100 (which isn't connected to a battery this round, but is rubber-banded to wire 99). And we're done, having travelled only 3 miles!
68.54 %
75 votes
logicstorydetective

Emperor Akbar once ruled over India. He was a wise and intelligent ruler; and he had in his court the Nine Gems, his nine advisors, who were each known for a particular skill. One of these Gems was Birbal, known for his wit and wisdom. The story below is one of the examples of his wit. Do you have it in you to find the answer? One day the Emperor Akbar stumbled on a small rock in the royal gardens and momentarily went off balance. He was in a bad mood that day and the incident only served to make him more angry. Finding a target for his mood of the day, he ordered the gardener's arrest and execution. Birbal heard of this and visited the gardener in the cell where he was being held awaiting execution. Birbal had known the gardener for many years and also knew of the gardener's immense respect and sense of loyalty for the king. He decided to help the gardener escape the death sentence and explained his plan to the gardener, who reluctantly agreed to go along. The next day the gardener was asked what his last wish was before he was hanged, as was custom. The gardener requested an audience with the emperor. This wish was granted, but when the man neared the throne he tried to attack the emperor. The emperor was shocked and demanded an explanation. The gardener looked at Birbal, who stepped forward and explained why the gardener had attacked the emperor. The emperor immediately realised how unjust he had been and ordered the release of the gardener. How did Birbal manage this?
"Your Majesty," said Birbal, "there is probably no person more loyal to you than this unfortunate gardener. Fearing that people would say you hanged him for a silly reason and question your sense of justice, he went out of his way to give you a genuine reason for hanging him."
67.93 %
144 votes