A king has 100 identical servants, each with a different rank between 1 and 100. At the end of each day, each servant comes into the king's quarters, one-by-one, in a random order, and announces his rank to let the king know that he is done working for the day. For example, servant 14 comes in and says "Servant 14, reporting in."
One day, the king's aide comes in and tells the king that one of the servants is missing, though he isn't sure which one.
Before the other servants begin reporting in for the night, the king asks for a piece of paper to write on to help him figure out which servant is missing. Unfortunately, all that's available is a very small piece that can only hold one number at a time. The king is free to erase what he writes and write something new as many times as he likes, but he can only have one number written down at a time.
The king's memory is bad and he won't be able to remember all the exact numbers as the servants report in, so he must use the paper to help him.
How can he use the paper such that once the final servant has reported in, he'll know exactly which servant is missing?

When the first servant comes in, the king should write down his number. For each other servant that reports in, the king should add that servant's number to the current number written on the paper, and then write this new number on the paper.
Once the final servant has reported in, the number on the paper should equal
(1 + 2 + 3 + ... + 99 + 100) - MissingServantsNumber
Since (1 + 2 + 3 + ... + 99 + 100) = 5050, we can rephrase this to say that the number on the paper should equal
5050 - MissingServantsNumber
So to figure out the missing servant's number, the king simply needs to subtract the number written on his paper from 5050:
MissingServantsNumber = 5050 - NumberWrittenOnThePaper

A fancy restaurant in New York was offering a promotional deal. A married couple could eat at the restaurant for half-price on their anniversary. To prevent scams, the couple would need proof of their wedding date. One Thursday evening, a couple claimed it was their anniversary, but didn't bring any proof. The restaurant manager was called to speak with the couple. When the manager asked to hear about the wedding day, the wife replied with the following: "Oh, it was a wonderful Sunday afternoon, birds were chirping, and flowers were in full bloom." After nearly 10 minutes of ranting, she comes to tell him that today was their 28th wedding anniversary.
"How lovely", the manager said, "However, you do not qualify for the discount. Today is not your anniversary, you are a liar".
How did the manager know that it wasn't their anniversary?

The calendar repeats itself every 28 years. So, if they were married on a Sunday 28 years ago, the day they were at the restaurant would also have to be a Sunday. Since it was a Thursday, the manager knew they were lying, and abruptly kicked them out of his restaurant.

You are walking down a path when you come to two doors. Opening one of the doors will lead you to a life of prosperity and happiness, while opening the other door will lead to a life of misery and sorrow. You don't know which door leads to which life.
In front of the doors are two twin brothers who know which door leads where. One of the brothers always lies, and the other always tells the truth. You don't know which brother is the liar and which is the truth-teller.
You are allowed to ask one single question to one of the brothers (not both) to figure out which door to open.
What question should you ask?

Ask "If I asked your brother what the good door is, what would he say?"
If you ask the truth-telling brother, he will point to the bad door, because this is what the lying brother would point to.
Alternatively, if you ask the lying brother, he will also point to the bad door, because this is NOT what the truth-telling brother would point to.
So whichever door is pointed to, you should go through the other one.

A king decided to let a prisoner try to escape the prison with his life. The king placed 2 marbles in a jar that was glued to a table. One of the marbles was supposed to be black, and one was supposed to be blue. If the prisoner could pick the blue marble, he would escape the prison with his life. If he picked the black marble, he would be executed. However, the king was very mean, and he wickedly placed 2 black marbles in the jars and no blue marbles. The prisoner witnessed the king only putting 2 black marbles in the jars. If the jar was not see-through and the jar was glued to the table and that the prisoner was mute so he could not say anything, how did he escape with his life?

The prisoner grabbed one of the marbles from the jar and concealed it in his hand. He then swallowed it, and picked up the other marble and showed everyone. The marble was black, and since the other marble was swallowed, it was assumed to be the blue one. So the mean king had to set him free.

After recent events, Question Mark is annoyed with his brother, Skid Mark. Skid thought it would be funny to hide Question's wallet. He told Question that he would get it back if he finds it. So, first off, Skid laid five colored keys in a row. One of them is a key to a room where Skid is hiding Question's wallet. Using the clues, can you determine the order of the keys and which is the right key?
Red: This key is somewhere to the left of the key to the door.
Blue: This key is not at one of the ends.
Green: This key is three spaces away from the key to the door (2 between).
Yellow: This key is next to the key to the door.
Orange: This key is in the middle.

The order (from left to right) is Green, Red, Orange, Blue, Yellow. The blue key is the key to the door.

A guard is stationed at the entrance to a bridge. He is tasked to shoot anyone who tries to cross to the other side of the bridge, and to turn away anyone who comes in from the opposite side of the bridge. You are on his side of the bridge and want to escape to the other side.
Because the bridge is old and rickety, anyone who tries to cross it does so at a constant speed, and it always takes exactly 10 minutes to cross.
The guard comes out of his post every 6 minutes and looks down the bridge for any people trying to leave, and at all other times he sits in his post and snoozes. You know you can sneak past him when he's sleeping, but the problem is that you won't be able to make it all the way to the other side of the bridge before he sees you (since he comes out every 6 minutes, but it takes 10 minutes to cross).
One day a brilliant idea comes to you, and soon you've successfully crossed to the other side of the bridge without being shot. How did you do it?

Right after the guard goes back to his post after checking the bridge, you sneak by and make your way down the bridge. After a little bit less than 6 minutes, you turn around and start walking back toward the guard. He will come out and see you, and assume that you are a visitor coming from the other side of the bridge, since you're only about 4 minutes from the end of the other side of the bridge. He will go back into his post since he doesn't plan to turn you away until you reach him, and then you turn back around and make your way the rest of the way to the other side of the bridge.

A man told his son that he would give him $1000 if he could accomplish the following task. The father gave his son ten envelopes and a thousand dollars, all in one dollar bills. He told his son, "Place the money in the envelopes in such a manner that no matter what number of dollars I ask for, you can give me one or more of the envelopes, containing the exact amount I asked for without having to open any of the envelopes. If you can do this, you will keep the $1000."
When the father asked for a sum of money, the son was able to give him envelopes containing the exact amount of money asked for. How did the son distribute the money among the ten envelopes?

The contents or the ten envelopes (in dollar bills) hould be as follows: $1, 2, 4, 8, 16, 32, 64, 128, 256, 489. The first nine numbers are in geometrical progression, and their sum, deducted from 1,000, gives the contents of the tenth envelope.

A man who lives in Middletown has two girlfriends, one in Northtown and one in Southtown. Trains from the Middletown train station leave for Northtown once every hour. Separate trains from the station also leave for Southtown once every hour. No trains go to both Northtown and Southtown.
Each day he gets to the Middletown train station at a completely random time and gets onto the first train that is going to either Northtown or Southtown, whichever comes first.
After a few months, he realizes that he spends 80% of his days with his girlfriend from Northtown, and only 20% of his days with his girlfriend from Southtown.
How could this be?

The train to Northtown leaves every hour, on the hour (9:00AM, 10:00AM, etc...).
The train to Southtown leaves at 12 after the hour (9:12AM, 10:12AM, etc...).
So there is only a 12/60 (1/5) chance that he will end up on the train to Southtown each day, since he will usually get to the station during the 48 minutes of each hour when the train to Northtown will be the next to come.

Dave is put in a cell with a dirt floor and only one window.
The window is too high for him to reach.
The only thing in the cell is a shovel.
He won't be able to get any food or water and only has two days to escape or he'll die.
Dave can't dig a tunnel because it will take him much longer than two days to do it.
How will Dave escape from the cell?

Dave has to use the shovel to create a pile of dirt under the window so he can climb up onto it and escape from the cell.