Riddle #966

cleanlogicmysterystory

A man owned a casino and invited some friends. It was a dark stormy night, and they all placed their money on the table right before the lights went out. When the lights came back on, the money was gone. The owner put a rooster in an old rusty tea kettle. He told everyone to get in line and touch the kettle after he turned the lights off, and the rooster will crow when the robber touched it. After everyone touched it, the rooster didn't crow, so the man told everyone to hold out their hands. After examining all the hands, he pointed out who the robber was. How did he know who stole the money?
Because the tea kettle was rusty, whoever touched it would have rust on their hands. The robber didn't touch the kettle, therefore he was the only one whose hands weren't rusty.
71.96 %
314 votes

Similar riddles

See also best riddles or new riddles.

cleanstoryclever

In classic mythology, there is the story of the Sphinx, a monster with the body of a lion and the upper part of a woman. The Sphinx lay crouched on the top of a rock along the highroad to the city of Thebes, and stopped all travellers passing by, proposing to them a riddle. Those who failed to answer the riddle correctly were killed. This is the riddle the Sphinx asked the travellers: "What animal walks on four legs in the morning, two legs during the day, and three legs in the evening?"
This is part of the story of Oedipus, who replied to the Sphinx, "Man, who in childhood creeps on hands and knees, in manhood walks erect, and in old age with the aid of a staff." Morning, day and night are representative of the stages of life. The Sphinx was so mortified at the solving of her riddle that she cast herself down from the rock and perished.
84.56 %
683 votes
cleanlogicsimpleclever

Two fathers and two sons went fishing one day. They were there the whole day and only caught 3 fish. One father said, that is enough for all of us, we will have one each. How can this be possible?
There was the father, his son, and his son's son. This equals 2 fathers and 2 sons for a total of 3!
82.79 %
71 votes
logicclean

There is a barrel with no lid and some wine in it. "This barrel of wine is more than half full," said Curly. Moe says, "No it's not. It's less than half full." Without any measuring implements and without removing any wine from the barrel, how can they easily determine who is correct?
Tilt the barrel until the wine barely touches the lip of the barrel. If the bottom of the barrel is visible then it is less than half full. If the barrel bottom is still completely covered by the wine, then it is more than half full.
81.89 %
53 votes
logicstoryclever

You have just purchased a small company called Company X. Company X has N employees, and everyone is either an engineer or a manager. You know for sure that there are more engineers than managers at the company. Everyone at Company X knows everyone else's position, and you are able to ask any employee about the position of any other employee. For example, you could approach employee A and ask "Is employee B an engineer or a manager?" You can only direct your question to one employee at a time, and can only ask about one other employee at a time. You're allowed to ask the same employee multiple questions if you want. Your goal is to find at least one engineer to solve a huge problem that has just hit the company's factory. The problem is so urgent that you only have time to ask N-1 total questions. The major problem with questioning the employees, however, is that while the engineers will always tell you the truth about other employees' roles, the managers may lie to you if they like. You can assume that the managers will do their best to confuse you. How can you find at least one engineer by asking at most N-1 questions?
You can find at least one engineer using the following process: Put all of the employees in a conference room. If there happen to be an even number of employees, pick one at random and send him home for the day so that we start with an odd number of employees. Note that there will still be more engineers than managers after we send this employee home. Then call them out one at a time in any order. You will be forming them into a line as follows: If there is nobody currently in the line, put the employee you just called out in the line. Otherwise, if there is anybody in the line, then we do the following. Let's call the employee currently at the front of the line Employee_Front, and call the employee who we just called out of the conference room Employee_Next. So ask Employee_Front if Employee_Next is a manager or an engineer. If Employee_Front says "manager", then send both Employee_Front and Employee_Next home for the day. However, if Employee_Front says "engineer", then put Employee_Next at the front of the line. Keep doing this until you've called everyone out of the conference room. Notice that at this point, you'll have asked N-1 or less questions (you asked at most one question each time you called an employee out except for the first employee, when you didn't ask a question, so that's at most N-1 questions). When you're done calling everyone out of the conference room, the person at the front of the line is an engineer. So you've found your engineer! But the real question: how does this work? We can prove this works by showing a few things. First, let's show that if there are any engineers in the line, then they must be in front of any managers. We'll show this with a proof by contradiction. Assume that there is a manager in front of an engineer somewhere in the line. Then it must have been the case that at some point, that engineer was Employee_Front and that manager was Employee_Next. But then Employee_Front would have said "manager" (since he is an engineer and always tells the truth), and we would have sent them both home. This contradicts their being in the line at all, and thus we know that there can never be a manager in front of an engineer in the line. So now we know that after the process is done, if there are any engineers in the line, then they will be at the front of the line. That means that all we have to prove now is that there will be at least one engineer in the line at the end of the process, and we'll know that there will be an engineer at the front. So let's show that there will be at least one engineer in the line. To see why, consider what happens when we ask Employee_Front about Employee_Next, and Employee_Front says "manager". We know for sure that in this case, Employee_Front and Employee_Next are not both engineers, because if this were the case, then Employee_Front would have definitely says "engineer". Put another way, at least one of Employee_Front and Employee_Next is a manager. So by sending them both home, we know we are sending home at least one manager, and thus, we are keeping the balance in the remaining employees that there are more engineers than managers. Thus, once the process is over, there will be more engineers than managers in the line (this is also sufficient to show that there will be at least one person in the line once the process is over). And so, there must be at least one engineer in the line. Put altogether, we proved that at the end of the process, there will be at least one engineer in the line and that any engineers in the line must be in front of any managers, and so we know that the person at the front of the line will be an engineer.
81.25 %
58 votes
logicmathstorycleanclever

In the land of Brainopia, there are three races of people: Mikkos, who tell the truth all the time, Kikkos, who always tell lies, and Zikkos, who tell alternate false and true statements, in which the order is not known (i.e. true, false, true or false, true, false). When interviewing three Brainopians, a foreigner received the following statements: Person 1: I am a Mikko. Person 2: I am a Kikko. Person 3: a. They are both lying. b. I am a Zikko. Can you help the very confused foreigner determine who is who, assuming each person represents a different race?
Person 1 is a Miko. Person 2 is a Ziko. Person 3 is a Kikko.
81.25 %
58 votes
logicmathstory

A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant. The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest. How can the swan succesfully escape?
Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference). From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore. The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed. The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run: [0.75R feet + 1 millimeter] * 4 < R*pi [This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.] Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.
81.23 %
51 votes
logiccleaninterview

While mixing sand, gravel, and cement for the foundation of a house, a worker noticed a small bird hopping along the top of the foundation wall. The bird misjudged a hop and fell down one of the holes between the blocks. The bird was down too far for anyone to reach it and the hole was too small for it to fly out of. Someone suggested using two sticks to reach down into the hole and pull the bird out, but this idea was rejected for fear it would injure the fragile bird. What would be the easiest way to get the bird out of the hole without injuring it?
Since they had plenty of sand available, they could pour a little at a time into the hole. The bird would constantly keep shifting its position so that it stood on the rising sand.
81.23 %
51 votes