Riddle #1017

logic

A challenge for my son

A man told his son that he would give him $1000 if he could accomplish the following task. The father gave his son ten envelopes and a thousand dollars, all in one dollar bills. He told his son, "Place the money in the envelopes in such a manner that no matter what number of dollars I ask for, you can give me one or more of the envelopes, containing the exact amount I asked for without having to open any of the envelopes. If you can do this, you will keep the $1000." When the father asked for a sum of money, the son was able to give him envelopes containing the exact amount of money asked for. How did the son distribute the money among the ten envelopes?
The contents or the ten envelopes (in dollar bills) hould be as follows: $1, 2, 4, 8, 16, 32, 64, 128, 256, 489. The first nine numbers are in geometrical progression, and their sum, deducted from 1,000, gives the contents of the tenth envelope.
94.11 %
43 votes

Similar riddles

See also best riddles or new riddles.

cleanlogicshortwhat am I

I cannot be seen

I repeat only the last word you say. The more I repeat, the softer I got. I cannot be seen but can be heard. What am I?
An Echo.
92.46 %
33 votes

logicshort

The sequence

1 11 21 1211 111221 312211 What is the next number in the sequence?
The next number it: 13112221. Each number describes the previous number. Starting with 1, the second line describes it 11 (one 1). Then the third line describes 11 as 21 (two 1’s). Then the fourth line describes 21 as 1211 (one 2, one 1). This is the pattern.
90.63 %
26 votes

logic

Vanilla ice cream

This teaser is based on a weird but true story from a few years ago. A complaint was received by the president of a major car company: "This is the fourth time I have written you, and I don't blame you for not answering me because I must sound crazy, but it is a fact that we have a tradition in our family of having ice cream for dessert after dinner each night. Every night after we've eaten, the family votes on which flavor of ice cream we should have and I drive down to the store to get it. I recently purchased a new Pantsmobile from your company and since then my trips to the store have created a problem. You see, every time I buy vanilla ice cream my car won't start. If I get any other kind of ice cream the car starts just fine. I want you to know I'm serious about this question, no matter how silly it sounds: 'What is there about a Pantsmobile that makes it not start when I get vanilla ice cream, and easy to start whenever I get any other kind?'" The Pantsmobile company President was understandably skeptical about the letter, but he sent an engineer to check it out anyway. He had arranged to meet the man just after dinner time, so the two hopped into the car and drove to the grocery store. The man bought vanilla ice cream that night and, sure enough, after they came back to the car it wouldn't start for several minutes. The engineer returned for three more nights. The first night, the man got chocolate. The car started right away. The second night, he got strawberry and again the car started right up. The third night he bought vanilla and the car failed to start. There was a logical reason why the man's car wouldn't start when he bought vanilla ice cream. What was it? HINT: The man lived in an extremely hot city, and this took place during the summer. Also, the layout of the grocery store was such that it took the man less time to buy vanilla ice cream.
Vanilla ice cream was the most popular flavor and was on display in a little case near the express check out, while the other flavors were in the back of the store and took more time to select and check out. This mattered because the man's car was experiencing vapor lock, which is excess heat boiling the fuel in the fuel line and the resulting air bubbles blocking the flow of fuel until the car has enough time to cool.. When the car was running there was enough pressure to move the bubbles along, but not when the car was trying to start.
93.55 %
39 votes

logicprobability

Brothers and sisters

You and a friend are standing in front of two houses. In each house lives a family with two children. "The family on the left has a boy who loves history, but their other child prefers math," your friend tells you. "The family on the right has a 7-year old boy, and they just had a new baby," he explains. "Does either family have a girl?" you ask. "I'm not sure," your friend says. "But pick the family that you think is more likely to have a girl. If they do have a girl, I'll give you $100." Which family should you pick, or does it not matter?
You should pick the house on the left. Specifically, there is a 2/3 chance that the family on the left has a girl, whereas there's only a 1/2 chance that the house on the right has a girl. This is a very counterintuitive riddle. It seems like there should always be a 1/2 chance that a given child is a girl. And in fact there is. The key word there is "given". Because we are not asking about a "given" child for the house on the left. We are asking about what could be either child. Whereas for the house on the right, we are asking about a "given" child...specifically, we're asking about the younger child. There are 3 possibilities for the children in the first house: Younger Older Girl Boy Boy Girl Boy Boy There is no "Girl, Girl" option because we know the house on the left has at least one boy. Since each of these 3 options is equally likely, and 2 of them have one girl, there is a 2/3 chance of there being a girl in the house on the left. For the house on the right, because we already know the older child is a boy, there are only two possibilities: Younger Older Girl Boy Boy Boy And as we can see, there is a 1/2 chance for the house on the right having a girl.
94.24 %
44 votes

logic

Measuring Gallons of Water

You have two jugs, one that holds exactly 3 gallons, and one that holds exactly 5 gallons. Using just these two jugs and a fire hose, how can you measure out exactly 4 gallons of water?
Fill the 5-gallon jug to the top, and then pour it into the 3-gallon jug until the 3-gallon jug is full. You now have 2 gallons remaining in the 5-gallon jug. Pour out the 3-gallon jug, and then pour the 2 gallons from the 5-gallon jug into the 3-gallon jug. Finally, fill the 5-gallon jug to the top and pour it into the 3-gallon jug until it's full. Since there was only space left for 1 more gallon in the 3-gallon jug, you now have exactly 4 gallons in the 5-gallon jug.
93.39 %
38 votes

logic

Horse race

Two men ride their horses to the town blacksmith to ask for his daughter's hand in marriage. To help decide who will get to marry her, the blacksmith proposes a very strange race: "You will race your horses down the mile-long road from here to to the center of town, and the man whose horse passes through city hall's gates LAST will get to marry my daughter." The men have no idea how to proceed, but after a few minutes of thinking, they come up with a great idea to abide by the blacksmith's rules. 30 minutes later, one of the men is gloating, having won the daughter's hand in marriage. What was the idea the men had?
Each man rides the other man's horse. They race as they normally would. The blacksmith said the man whose horse crosses last would win, so the man who wins the race would have his horse finish last.
93.39 %
38 votes