Best riddles

logic

Two convicts and the scape plan

Two convicts are locked in a cell. There is an unbarred window high up in the cell. No matter if they stand on the bed or one on top of the other they can't reach the window to escape. They then decide to tunnel out. However, they give up with the tunnelling because it will take too long. Finally one of the convicts figures out how to escape from the cell. What is his plan?
His plan is to dig the tunnel and pile up the dirt to climb up to the window to escape.
90.26 %
43 votes

logic

Lost in the desert

Jack and Joe were on vacation and driving along a deserted country road from the town of Kaysville to the town of Lynnsville. They came to a multiple fork in the road. The sign post had been knocked down and they were faced with choosing one of five different directions. Since they had left their map at the last gas station and there was no one around to ask, how could Jack and Joe find their way to Lynnsville?
They need to stand the signpost up so that the arm reading Kaysville points in the direction of Kaysville, the town they had just come from. With one arm pointing the correct way, the other arms will also point in the right directions.
90.26 %
43 votes

cleanlogicshort

It directs us when to come and go

It regulates our daily movements, but it feels no interest in our lives. It directs us when to come and go, but does not care if we pay attention. What is it?
A clock.
90.26 %
43 votes

crazyfunnyshort

I am a soldier

I am a soldier and i really hate one month. Which month i am talking about?
March.
90.26 %
43 votes

logicmath

Strange Miles

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
90.26 %
43 votes

logicmath

Tiling Without Corners

You can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square. But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board. Can you explain why tiling this board isn't possible?
Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square. Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.
90.26 %
43 votes

cleanlogicmath

Mick and John

Mick and John were in a 100 meter race. When Mick crossed the finish line, John was only at the 90 meter mark. Mick suggested they run another race. This time, Mick would start ten meters behind the starting line. All other things being equal, will John win, lose, or will it be a tie in the second race?
John will lose again. In the second race, Mick started ten meters back. By the time John reaches the 90 meter mark, Mick will have caught up him. Therefore, the final ten meters will belong to the faster of the two. Since Mick is faster than John, he will win the final 10 meters and of course the race.
90.26 %
43 votes

what am I

Nowhere in tomorrow

I’m at the beginning of the end and the start of eternity, at the end of time and space, in the middle of yesterday but nowhere in tomorrow. What am I?
The letter "e".
90.26 %
43 votes

funnylogic

24 foot chain

A horse is on a 24 foot chain and wants an apple that is 26 feet away. How can the horse get to the apple?
The chain is not attached to anything.
90.26 %
43 votes