Best riddles

cleanfunnylogic

A man rode out of town on Sunday, he stayed a whole night at a hotel and rode back to town the next day on Sunday. How is this possible?
His Horse was called Sunday!
80.94 %
57 votes
funny

What sickness do cowboys get from riding wild horses?
Bronchitis (bronc-itis).
80.94 %
57 votes
cleanlogicmath

Mick and John were in a 100 meter race. When Mick crossed the finish line, John was only at the 90 meter mark. Mick suggested they run another race. This time, Mick would start ten meters behind the starting line. All other things being equal, will John win, lose, or will it be a tie in the second race?
John will lose again. In the second race, Mick started ten meters back. By the time John reaches the 90 meter mark, Mick will have caught up him. Therefore, the final ten meters will belong to the faster of the two. Since Mick is faster than John, he will win the final 10 meters and of course the race.
80.94 %
57 votes
logicmath

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races. You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in. What is the least number of races you can conduct to figure out which 3 horses are fastest?
You need to conduct 7 races. First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on. We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races). This table shows our remaining horses: A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 A3 B3 C3 D3 E3 For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last). We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1). Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3). Let's look at our updated table, having removed these horses that can't be in the top 3: A1 B1 C1 A2 B2 C2 A3 B3 C3 We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table: A1 B1 C1 A2 B2 A3 We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.
80.94 %
57 votes
logicmathtrickystoryclever

Three people check into a hotel room. The bill is $30 so they each pay $10. After they go to the room, the hotel's cashier realizes that the bill should have only been $25. So he gives $5 to the bellhop and tells him to return the money to the guests. The bellhop notices that $5 can't be split evenly between the three guests, so he keeps $2 for himself and then gives the other $3 to the guests. Now the guests, with their dollars back, have each paid $9 for a total of $27. And the bellhop has pocketed $2. So there is $27 + $2 = $29 accounted for. But the guests originally paid $30. What happened to the other dollar?
This riddle is just an example of misdirection. It is actually nonsensical to add $27 + $2, because the $27 that has been paid includes the $2 the bellhop made. The correct math is to say that the guests paid $27, and the bellhop took $2, which, if given back to the guests, would bring them to their correct payment of $27 - $2 = $25.
80.94 %
57 votes
simplelogictricky

You see a boat filled with people. It has not sunk, but when you look again you don't see a single person on the boat. Why?
All the people were married.
80.94 %
57 votes