logicTwo soldiers, William and Ethan, are assigned to guard a bridge, which connects the West and East sides of the Great Kingdom. Each soldier is ordered to stand at an end of the bridge to make sure no criminals cross.
On one side of the bridge stands William, watching over the West side of the kingdom, and making sure no shady characters try to cross the bridge.
Ethan stands on the other side of the bridge, facing the East side of the kingdom with his rifle at the ready in case any criminals try to pass across.
"Any criminals today?" William asks.
Ethan rolls his eyes. "What do you think?" he asks.
"You roll your eyes too much," William says.
How could William tell that Ethan was rolling his eyes?

William is on the east side of the bridge, facing the West side of the kingdom, while Ethan is on the west side of the bridge, facing the East side of the kingdom. So William and Ethan are facing each other, and can see each other's faces.

logicmathSam has got three daughters. The eldest daughter is the most honest girl in the universe and she always speaks truth. The middle daughter is a modest woman. She speaks truth and lies according to the situations. The youngest one never speaks truth. Not a single word she spoke was true and would never be true.
Sam brought a marriage proposal for one of his girls. It was John. John wanted to marry either the eldest or the youngest daughter of Sam as he can easily identify whether the girl speaks truth or lie!
John told his desire to Sam. However, Sam laid a condition. He told John that he will not say who the eldest, middle or youngest one is. Also, he allowed john to ask only one question to identify the eldest or youngest so he can marry one.
John asked one question and found the right girl. What was the question and whom should he pick?
He asks this question to one of the daughters.
If he asked this question to older daughter pointing at other two, he probably would know the youngest one! NO matter, she always speaks truth.
If he asked the question to middle one, probably he can choose either.
If he asked the youngest one, she always lies and he can find eldest one! No matter, he has to choose the youngest one based on the answer.

The question he asked is, ‘Is she older than her!’
He asks this question to one of the daughters.
If he asked this question to older daughter pointing at other two, he probably would know the youngest one! NO matter, she always speaks truth.
If he asked the question to middle one, probably he can choose either.
If he asked the youngest one, she always lies and he can find eldest one. No matter, he has to choose the youngest one based on the answer.

logic
Six jugs are in a row. The first three are filled with coke, and the last three are empty. By moving only one glass, can you arrange them so that the full and the empty glasses alternate?

Move and then pour all coke from second glass to fifth glass.

cleanshortWhat is the ancient invention that allows people to see through walls?

A window.

logicmathThree people check into a hotel room. The bill is $30 so they each pay $10. After they go to the room, the hotel's cashier realizes that the bill should have only been $25. So he gives $5 to the bellhop and tells him to return the money to the guests. The bellhop notices that $5 can't be split evenly between the three guests, so he keeps $2 for himself and then gives the other $3 to the guests.
Now the guests, with their dollars back, have each paid $9 for a total of $27. And the bellhop has pocketed $2. So there is $27 + $2 = $29 accounted for. But the guests originally paid $30. What happened to the other dollar?

This riddle is just an example of misdirection. It is actually nonsensical to add $27 + $2, because the $27 that has been paid includes the $2 the bellhop made.
The correct math is to say that the guests paid $27, and the bellhop took $2, which, if given back to the guests, would bring them to their correct payment of $27 - $2 = $25.

logic Four people come to an old bridge in the middle of the night. The bridge is rickety and can only support 2 people at a time. The people have one flashlight, which needs to be held by any group crossing the bridge because of how dark it is.
Each person can cross the bridge at a different rate: one person takes 1 minute, one person takes 2 minutes, one takes 5 minutes, and the one person takes 10 minutes. If two people are crossing the bridge together, it will take both of them the time that it takes the slower person to cross.
Unfortunately, there are only 17 minutes worth of batteries left in the flashlight. How can the four travellers cross the bridge before time runs out?

The two keys here are:
You want the two slowest people to cross together to consolidate their slow crossing times.
You want to make sure the faster people are set up in order to bring the flashlight back quickly after the slow people cross.
So the order is:
1-minute and 2-minute cross (2 minute elapsed)
1-minute comes back (3 minutes elapsed)
5-minute and 10-minute cross (13 minutes elapsed)
2-minute comes back (15 minutes elapsed)
1-minute and 2-minute cross (17 minutes elapsed)

logicAt a dinner party, many of the guests exchange greetings by shaking hands with each other while they wait for the host to finish cooking.
After all this handshaking, the host, who didn't take part in or see any of the handshaking, gets everybody's attention and says: "I know for a fact that at least two people at this party shook the same number of other people's hands."
How could the host know this? Note that nobody shakes his or her own hand.

Assume there are N people at the party.
Note that the least number of people that someone could shake hands with is 0, and the most someone could shake hands with is N-1 (which would mean that they shook hands with every other person).
Now, if everyone at the party really were to have shaken hands with a different number of people, then that means somone must have shaken hands with 0 people, someone must have shaken hands with 1 person, and so on, all the way up to someone who must have shaken hands with N-1 people. This is the only possible scenario, since there are N people at the party and N different numbers of possible people to shake hands with (all the numbers between 0 and N-1 inclusive).
But this situation isn't possible, because there can't be both a person who shook hands with 0 people (call him Person 0) and a person who shook hands with N-1 people (call him Person N-1). This is because Person 0 shook hands with nobody (and thus didn't shake hands with Person N-1), but Person N-1 shook hands with everybody (and thus did shake hands with Person 0). This is clearly a contradiction, and thus two of the people at the party must have shaken hands with the same number of people.

logicmathshortTake 9 from 6, 10 from 9, 50 from 40 and leave 6. How is it possible?

SIX - 9 (IX) = S
9 (IX) - 10 (X) = I
40 (XL) - 50 (L) = X

funnyWhy did the pilot sit on her alarm clock?

She wanted to be on time.

logicshort An archeologist claims he found a Roman coin dated 46 B.C. in Egypt. How much should Louvre Museum pay for the coin? Note: Roman coins can really be found in Egypt

Nothing. That coin is as phony as a three dollar bill. In 46 B.C., they wouldn't have known how many years before Christ it was.