Best riddles

simpleclean

There are 20 people in an empty, square room. Each person has full sight of the entire room and everyone in it without turning his head or body, or moving in any way (other than the eyes). Where can you place an apple so that all but one person can see it?
Place the apple on one person's head.
83.36 %
50 votes
logicmath

You have a basket of infinite size (meaning it can hold an infinite number of objects). You also have an infinite number of balls, each with a different number on it, starting at 1 and going up (1, 2, 3, etc...). A genie suddenly appears and proposes a game that will take exactly one minute. The game is as follows: The genie will start timing 1 minute on his stopwatch. Where there is 1/2 a minute remaining in the game, he'll put balls 1, 2, and 3 into the basket. At the exact same moment, you will grab a ball out of the basket (which could be one of the balls he just put in, or any ball that is already in the basket) and throw it away. Then when 3/4 of the minute has passed, he'll put in balls 4, 5, and 6, and again, you'll take a ball out and throw it away. Similarly, at 7/8 of a minute, he'll put in balls 7, 8, and 9, and you'll take out and throw away one ball. Similarly, at 15/16 of a minute, he'll put in balls 10, 11, and 12, and you'll take out and throw away one ball. And so on....After the minute is up, the genie will have put in an infinite number of balls, and you'll have thrown away an infinite number of balls. Assume that you pull out a ball at the exact same time the genie puts in 3 balls, and that the amount of time this takes is infinitesimally small. You are allowed to choose each ball that you pull out as the game progresses (for example, you could choose to always pull out the ball that is divisible by 3, which would be 3, then 6, then 9, and so on...). You play the game, and after the minute is up, you note that there are an infinite number of balls in the basket. The next day you tell your friend about the game you played with the genie. "That's weird," your friend says. "I played the exact same game with the genie yesterday, except that at the end of my game there were 0 balls left in the basket." How is it possible that you could end up with these two different results?
Your strategy for choosing which ball to throw away could have been one of many. One such strategy that would leave an infinite number of balls in the basket at the end of the game is to always choose the ball that is divisible by 3 (so 3, then 6, then 9, and so on...). Thus, at the end of the game, any ball of the format 3n+1 (i.e. 1, 4, 7, etc...), or of the format 3n+2 (i.e. 2, 5, 8, etc...) would still be in the basket. Since there will be an infinite number of such balls that the genie has put in, there will be an infinite number of balls in the basket. Your friend could have had a number of strategies for leaving 0 balls in the basket. Any strategy that guarantees that every ball n will be removed after an infinite number of removals will result in 0 balls in the basket. One such strategy is to always choose the lowest-numbered ball in the basket. So first 1, then 2, then 3, and so on. This will result in an empty basket at the game's end. To see this, assume that there is some ball in the basket at the end of the game. This ball must have some number n. But we know this ball was thrown out after the n-th round of throwing balls away, so it couldn't be in there. This contradiction shows that there couldn't be any balls left in the basket at the end of the game. An interesting aside is that your friend could have also used the strategy of choosing a ball at random to throw away, and this would have resulted in an empty basket at the end of the game. This is because after an infinite number of balls being thrown away, the probability of any given ball being thrown away reaches 100% when they are chosen at random.
83.36 %
50 votes
funny

Why is Santa so good at Karate?
Because he has a black belt.
83.36 %
50 votes
logicsimple

There are 3 switches outside of a room, all in the 'off' setting. One of them controls a lightbulb inside the room, the other two do nothing. You cannot see into the room, and once you open the door to the room, you cannot flip any of the switches any more. Before going into the room, how would you flip the switches in order to be able to tell which switch controls the light bulb?
Flip the first switch and keep it flipped for five minutes. Then unflip it, and flip the second switch. Go into the room. If the lightbulb is off but warm, the first switch controls it. If the light is on, the second switch controls it. If the light is off and cool, the third switch controls it.
83.36 %
58 votes
logicmath

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?
833 apples. Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go. Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind). Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.
83.36 %
58 votes
logicstoryclean

One day, Emperor Akbar posed a question to Birbal. He asked him what Birbal would choose if he offered either justice or a gold coin. "The gold coin," said Birbal without hesitation. On hearing this, Akbar was taken aback. "You would prefer a gold coin to justice?" he asked, not believing his own ears. "Yes," said Birbal. The other courtiers were amazed by Birbal's display of idiocy. They were full of glee that Birbal had finally managed himself to do what these courtiers had not been able to do for a long time - discredit Birbal in the emperor's eyes! "I would have been disappointed if this was the choice made even by my lowliest of servants," continued the emperor. "But coming from you it's not only disappointing, but shocking and sad. I did not know you were so debased!" How did Birbal justify his answer to the enraged and hurt Emperor?
"One asks for what one does not have, Your Majesty." said Birbal, smiling gently and in quiet tones. "Under Your Majesty´s rule, justice is available to everybody. But I am a spendthrift and always short of money and therefore I said I would choose the gold coin." The answer immensely pleased the emperor and respect for Birbal was once again restored in the emperor's eyes.
83.36 %
58 votes