Best riddles

logic

Monk on a Path

A monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain. Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.
Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain). Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.
93.98 %
42 votes

logic

The stories of Emperor Akbar and Birbal

Emperor Akbar once ruled over India. He was a wise and intelligent ruler; and he had in his court the Nine Gems, his nine advisors, who were each known for a particular skill. One of these Gems was Birbal, known for his wit and wisdom. The story below is one of the examples of his wit. Do you have it in you to find the answer? One day the Emperor Akbar stumbled on a small rock in the royal gardens and momentarily went off balance. He was in a bad mood that day and the incident only served to make him more angry. Finding a target for his mood of the day, he ordered the gardener's arrest and execution. Birbal heard of this and visited the gardener in the cell where he was being held awaiting execution. Birbal had known the gardener for many years and also knew of the gardener's immense respect and sense of loyalty for the king. He decided to help the gardener escape the death sentence and explained his plan to the gardener, who reluctantly agreed to go along. The next day the gardener was asked what his last wish was before he was hanged, as was custom. The gardener requested an audience with the emperor. This wish was granted, but when the man neared the throne he tried to attack the emperor. The emperor was shocked and demanded an explanation. The gardener looked at Birbal, who stepped forward and explained why the gardener had attacked the emperor. The emperor immediately realised how unjust he had been and ordered the release of the gardener. How did Birbal manage this?
"Your Majesty," said Birbal, "there is probably no person more loyal to you than this unfortunate gardener. Fearing that people would say you hanged him for a silly reason and question your sense of justice, he went out of his way to give you a genuine reason for hanging him."
93.98 %
42 votes

logic

The Devil Game

You die and the devil says he'll let you go to heaven if you beat him in a game. The devil sits you down at a perfectly round table. He gives himself and you an infinite pile of quarters. He says, "OK, we'll take turns putting one quarter down, no overlapping allowed, and the quarters must rest flat on the table surface. The first guy who can't put a quarter down loses." You guys are about to start playing, and the devil says that he'll go first. However, at this point you immediately interject, and ask if you can go first instead. You make this interjection because you are very smart and can place quarters perfectly, and you know that if you go first, you can guarantee victory. Explain how you can guarantee victory.
You place a quarter right in the center of the table. After that, whenever the devil places a quarter on the table, mimic his placement on the opposite side of the table.. If he has a place to place a quarter, so will you. The devil will run out of places to put a quarter before you do.
93.98 %
42 votes

logicshort

The mystery of Cindy

The day before yesterday Cindy was 17. Next year she will be 20. How can this be?
The statement was made on January 1. Cindy's birthday is on December 31. She was 17 the day before yesterday (Dec 30). She was 18 yesterday. She will be 19 this year (Dec 31) and 20 next year.
93.98 %
42 votes

cleanshort

A raw egg

How can you drop a raw egg from a height onto a concrete floor without cracking it?
Concrete floors are very hard to crack.
93.98 %
42 votes

logicshort

Word rebus

What word does this rebus represents? meta meta meta meta
Metaphor (Meta 4).
93.98 %
42 votes

logicprobability

Russian roulette choice

Your enemy challenges you to play Russian Roulette with a 6-cylinder pistol (meaning it has room for 6 bullets). He puts 2 bullets into the gun in consecutive slots, and leaves the next four slots blank. He spins the barrel and hands you the gun. You point the gun at yourself and pull the trigger. It doesn't go off. Your enemy tells you that you need to pull the trigger one more time, and that you can choose to either spin the barrel at random, or not, before pulling the trigger again. Spinning the barrel will position the barrel in a random position. Assuming you'd like to live, should you spin the barrel or not before pulling the trigger again?
You are better off shooting again without spinning the barrel. Given that the gun didn't fire the first time, it was pointing to one of the four empty slots. Because your enemy spun the cylinder randomly, it would have been pointing to any of these empty slots with equal probability. Three of these slots would not fire again after an additional trigger-pull, and one of them would. Thus, by not spinning the barrel, there is a 1/4 chance that pulling the trigger again would fire the gun. Alternatively, if you spin the barrel, it will point to each of the 6 slots with equal probability. Because 2 of these 6 slots have bullets in them, there would be a 2/6 = 1/3 chance that the gun would fire after spinning the barrel. Thus, you are better off not spinning the barrel.
93.98 %
42 votes