Best riddles

logictricky

Swaff was traveling in an elevator, being cool, when he suddenly heard the cord supporting the elevator snap. Being the cool guy that he is, he knew of a myth where if you could jump at the right time, you could possibly be able to survive a plunge in an elevator. Now, when Swaff was a boy, he spent all of his math classes making fun of his female teacher's moustache. He never paid attention, so he was a tad bit slow in his mathematical calculations. He did, however, have a very bizarre talent, in which he could tell the exact speed he was traveling. That came in pretty lucky today. Swaff knew he was falling at an even rate of 50 miles per hour. When the cord snapped, he was exactly 110 feet above the ground. He knew that he must jump at the right time to have any hopes of surviving. Now, after doing the math, please tell me when Swaff jumped.
He never did. By the time Swaff figured out that he would have to jump in 1.5 seconds, he would already be dead. Not even the best of mathematicians could do all the math needed in 1 and half seconds. Swaff fell to his death.
83.08 %
41 votes
cleanfunnylogic

A man rode out of town on Sunday, he stayed a whole night at a hotel and rode back to town the next day on Sunday. How is this possible?
His Horse was called Sunday!
83.05 %
49 votes
cleanlogicsimpleclever

Two fathers and two sons went fishing one day. They were there the whole day and only caught 3 fish. One father said, that is enough for all of us, we will have one each. How can this be possible?
There was the father, his son, and his son's son. This equals 2 fathers and 2 sons for a total of 3!
83.05 %
49 votes
funny

Why is Santa so good at Karate?
Because he has a black belt.
83.05 %
49 votes
logicmathstory

A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant. The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest. How can the swan succesfully escape?
Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference). From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore. The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed. The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run: [0.75R feet + 1 millimeter] * 4 < R*pi [This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.] Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.
83.05 %
49 votes
logicmathsimplecleanclever

There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute. The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge. From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.
The longest amount of time that could pass would be 1 minute. If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other. In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions. So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.
83.05 %
49 votes