Best riddles

logic

The judge

A man was to be sentenced, and the judge told him, "You may make a statement. If it is true, I'll sentence you to four years in prison. If it is false, I'll sentence you to six years in prison." After the man made his statement, the judge decided to let him go free.What did the man say?
He said, "You'll sentence me to six years in prison." If it was true, then the judge would have to make it false by sentencing him to four years. If it was false, then he would have to give him six years, which would make it true. Rather than contradict his own word, the judge set the man free.
91.22 %
48 votes

logic

Three Childrens' Ages

A deliveryman comes to a house to drop off a package. He asks the woman who lives there how many children she has. "Three," she says. "And I bet you can't guess their ages." "Ok, give me a hint," the deliveryman says. "Well, if you multiply their ages together, you get 36," she says. "And if you add their ages together, the sum is equal to our house number." The deliveryman looks at the house number nailed to the front of her house. "I need another hint," he says. The woman thinks for a moment. "My youngest son will have a lot to learn from his older brothers," she says. The deliveryman's eyes light up and he tells her the ages of her three children. What are their ages?
Their ages are 1, 6, and 6. We can figure this out as follows: Given that their ages multiply out to 36, the possible ages for the children are: 1, 1, 36 (sum = 38) 1, 2, 18 (sum = 21) 1, 3, 12 (sum = 16) 1, 4, 9 (sum = 14) 1, 6, 6 (sum = 13) 2, 2, 9 (sum = 13) 2, 3, 6 (sum = 11) 3, 3, 4 (sum = 10) When the woman tells the deliveryman that the children's ages add up to her street number, he still doesn't know their ages. The only way this could happen is that there is more than one possible way for the children's ages to add up to the number on the house (or else he would have known their ages when he looked at the house number). Looking back at the possible values for the children's ages, you can see that there is only one situation in which there are multiple possible values for the children's ages that add up to the same sum, and that is if their ages are either 1, 6, and 6 (sums up to 13), or 2, 2, and 9 (also sums up to 13). So these are now the only possible values for their ages. When the woman then tells him that her youngest son has two older brothers (who we can tell are clearly a number of years older), the only possible situation is that their ages are 1, 6, and 6.
91.22 %
48 votes

cleanfunny

An orange

What kind of flower lives between your mouth amd chin? Two-lips.
It concentrates.
91.22 %
48 votes

logicmath

Appleland to Bananaville

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?
833 apples. Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go. Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind). Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.
91.22 %
48 votes

logicshort

The mystery of Cindy

The day before yesterday Cindy was 17. Next year she will be 20. How can this be?
The statement was made on January 1. Cindy's birthday is on December 31. She was 17 the day before yesterday (Dec 30). She was 18 yesterday. She will be 19 this year (Dec 31) and 20 next year.
91.22 %
48 votes

logicmathprobability

The same birthday

What is the least number of people that need to be in a room such that there is greater than a 50% chance that at least two of the people have the same birthday?
Only 23 people need to be in the room. Our first observation in solving this problem is the following: (the probability that at least 2 people have the same birthday + the probability that nobody has the same birthday) = 1.0 What this means is that there is a 100% chance that EITHER everybody in the room has a different birthday, OR at least two people in the room have the same birthday (and these probabilities don't add up to more than 1.0 because they cover mutually exclusive situations). With some simple re-arranging of the formula, we get: the probability that at least 2 people have the same birthday = (1.0 - the probability that nobody has the same birthday) So now if we can find the probability that nobody in the room has the same birthday, we just subtract this value from 1.0 and we'll have our answer. The probability that nobody in the room has the same birthday is fairly straightforward to calculate. We can think of this as a "selection without replacement" problem, where each person "selects" a birthday at random, and we then have to figure out the probability that no two people select the same birthday. The first selection has a 365/365 chance of being different than the other birthdays (since none have been selected yet). The next selection has a 364/365 chance of being different than the 1 birthday that has been selected so far. The next selection has a 363/365 chance of being different than the 2 birthdays that have been selected so far. These probabilities are multiplied together since each is conditional on the previous. So for example, the probability that nobody in a room of 3 people have the same birthday is (365/365 * 364/365 * 363/365) =~ 0.9918 More generally, if there are n people in a room, then the probability that nobody has the same birthday is (365/365 * 364/365 * ... * (365-n+2)/365 * (365-n+1)/365) We can plug in values for n. For n=22, we get that the probability that nobody has the same birthday is 0.524, and thus the probabilty that at least two people have the same birthday is (1.0 - 0.524) = 0.476 = 47.6%. Then for n=23, we get that the probability that nobody has the same birthday is 0.493, and thus the probabilty that at least two people have the same birthday is 1.0 - 0.493) = 0.507 = 50.7%. Thus, once we get to 23 people we have reached the 50% threshold.
91.22 %
48 votes

what am I

Sooner or later everybody needs my help

I dig out tiny caves, and store gold and silver in them. I also build bridges of silver and make crowns of gold. They are the smallest you could imagine. Sooner or later everybody needs my help, yet many people are afraid to let me help them. What am I?
A dentist.
91.22 %
48 votes

interviewlogic

Heaven’s Gate Problem

You are standing before two doors. One of the path leads to heaven and the other one leads to hell. There are two guardians, one by each door. You know one of them always tells the truth and the other always lies, but you don’t know who is the honest one and who is the liar. You can only ask one question to one of them in order to find the way to heaven. What is the question?
The question you should ask is “If I ask the other guard about which side leads to heaven, what would he answer?”. It should be fairly easy to see that irrespective of whom do you ask this question, you will always get an answer which leads to hell. So you can chose the other path to continue your journey to heaven. This idea was famously used in the 1986 film Labyrinth. Here is the explanation if it is yet not clear. Let us assume that the left door leads to heaven. If you ask the guard which speaks truth about which path leads to heaven, as he speaks always the truth, he would say “left”. Now that the liar , when he is asked what “the other guard (truth teller) ” would answer, he would definitely say “right”. Similarly, if you ask the liar about which path leads to heaven, he would say “right”. As the truth teller speaks nothing but the truth, he would say “right” when he is asked what “the other guard( liar ) ” would answer. So in any case, you would end up having the path to hell as an answer. So you can chose the other path as a way to heaven.
91.22 %
48 votes