When Manish was three years old he carved a nail into his favorite tree to mark his height. Six years later at age nine, Manish returned to see how much higher the nail was. If the tree grew by five centimeters each year, how much higher would the nail be.
The nail would be at the same height since trees grow at their tops.
Only one color, but not one size.
Stuck at the bottom, yet I easily fly.
Present in sun, but not in rain.
Doing no harm, and feeling no pain.
What Am I?
A monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain.
Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.
Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain).
Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.