## Foot but no legs

What has a foot but no legs?

A snail.

What has a foot but no legs?

A snail.

It's red, blue, purple and green. No one can reach it, not even the queen.

Rainbow.

What you cannot hold it but it is yours?

Your heart.

The digits 0-9(0,1,2,3,4,5,6,7,8,9) can be rearranged into 3628800 distinct 10 digits numbers.
How many of these numbers are prime?

None. The sum of numbers from 0-9(0,1,2,3,4,5,6,7,8,9) is 45 and therefore can be divisible by 3 and 9.

Shadow drove into the Speedy Service Station and pulled up to the pumps. "Fill it up, please," said Shadow. "
This may sound strange," said the owner, "but I'd rather fill two cars from out of town than one car from this town."
Shadow looked across the small town and replied, "I know just what you mean."
Why would the owner feel this way?

The owner would rather fill two cars from anywhere than one car from town because he would make twice the amount of money.

A man was driving a truck at 60 mph. He did not have his headlights on and the moon was not up. Yet he did not hit the woman who crossed the road. How?

He was driving the truck during daytime.

This is a newspaper headline:
Workers Strike - Want to Make Less Money!
What is going on?

The workers work at the mint and are tired of being overworked. They want to work less, which is making less money, since money is made at the mind!

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races.
You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in.
What is the least number of races you can conduct to figure out which 3 horses are fastest?

You need to conduct 7 races.
First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on.
We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races).
This table shows our remaining horses:
A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last).
We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1).
Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3).
Let's look at our updated table, having removed these horses that can't be in the top 3:
A1 B1 C1
A2 B2 C2
A3 B3 C3
We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table:
A1 B1 C1
A2 B2
A3
We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.

What is red but it smells like a blue paint?

Red paint.

A doctor and a bus driver are both in love with the same woman, an attractive girl named Sarah. The bus driver had to go on a long bustrip that would last a week. Before he left, he gave Sarah seven apples. Why?

An apple a day keeps the doctor away!