cleanshortI heard of an invading, vanquishing army sweeping across the land, liquid-quick; conquering everything, quelling resistance. With it came darkness, dimming the light. Humans hid in their houses, while outside spears pierced, shattering stones walls. Uncountable soldiers smashed into the ground, but each elicited life as he died. When the army had vanished, advancing northward, the land was gree and growing, refresh.

Rainstorm.

shortIf there are four sheep, two dogs and one herds-men, how many feet are there?

Two. Sheep have hooves; dogs have paws; only people have feet.

cleanfunnyWhat does the orange do, when it takes a test?

It concentrates.

cleanfunnyshortWhat is a tree's favorite drink?

Root beer.

logicYou walk into a creepy house by yourself. There is no electricity, plumbing or ventilation. Inside you notice 3 doors with numbers on them. Once you open the doors you will die a particular way.
Door #1 You’ll be eaten by a lion who is hungry.
Door #2 You’ll be stabbed to death.
Door #3 There is an electric chair waiting for you.
Which door do you pick?

Door #3, Since There Is No Electricity To Harm You.

funnyshortWhat did the boy squirrel say to the girl squirrel on Valentine's Day?

I am nuts about you.

cleanshortEven if you give this to someone else, you still get to keep it. What is it?

Your word.

logicThere is a barrel with no lid and some wine in it. "This barrel of wine is more than half full," said Curly. Moe says, "No it's not. It's less than half full."
Without any measuring implements and without removing any wine from the barrel, how can they easily determine who is correct?

Tilt the barrel until the wine barely touches the lip of the barrel. If the bottom of the barrel is visible then it is less than half full. If the barrel bottom is still completely covered by the wine, then it is more than half full.

cleanshortThousands lay up gold within this house, but no man made it. Spears past counting guard this house, but no man wards it.

A beehive.

logicmathA swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
How can the swan succesfully escape?

Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference).
From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore.
The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed.
The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run:
[0.75R feet + 1 millimeter] * 4 < R*pi
[This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.]
Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.