Best riddles


Something very extraordinary happened on the 6th of May, 1978 at thirty-four minutes past twelve a.m. What was it?
At that moment, the time and day could be written as 12:34, 5/6/78.
79.48 %
65 votes

Hussey has been caught stealing goats, and is brought into court for justice. The judge is his ex-wife Amy Hussey, who wants to show him some sympathy, but the law clearly calls for two shots to be taken at Hussey from close range. To make things a little better for Hussey, Amy Hussey tells him she will place two bullets into a six-chambered revolver in successive order. She will spin the chamber, close it, and take one shot. If Hussey is still alive, she will then either take another shot, or spin the chamber again before shooting. Hussey is a bit incredulous that his own ex-wife would carry out the punishment, and a bit sad that she was always such a rule follower. He steels himself as Amy Hussey loads the chambers, spins the revolver, and pulls the trigger. Whew! It was blank. Then Amy Hussey asks, 'Do you want me to pull the trigger again, or should I spin the chamber a second time before pulling the trigger?' What should Hussey choose?
Hussey should have Amy Hussey pull the trigger again without spinning. We know that the first chamber Amy Hussey fired was one of the four empty chambers. Since the bullets were placed in consecutive order, one of the empty chambers is followed by a bullet, and the other three empty chambers are followed by another empty chamber. So if Hussey has Amy Hussey pull the trigger again, the probability that a bullet will be fired is 1/4. If Amy Hussey spins the chamber again, the probability that she shoots Hussey would be 2/6, or 1/3, since there are two possible bullets that would be in firing position out of the six possible chambers that would be in position.
79.48 %
65 votes

There are 3 switches outside of a room, all in the 'off' setting. One of them controls a lightbulb inside the room, the other two do nothing. You cannot see into the room, and once you open the door to the room, you cannot flip any of the switches any more. Before going into the room, how would you flip the switches in order to be able to tell which switch controls the light bulb?
Flip the first switch and keep it flipped for five minutes. Then unflip it, and flip the second switch. Go into the room. If the lightbulb is off but warm, the first switch controls it. If the light is on, the second switch controls it. If the light is off and cool, the third switch controls it.
79.48 %
65 votes

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
79.48 %
65 votes

The Pope, Beyonce, POTUS, and Bill Gates are on the same plane. There are only 3 parachutes left for the 4 of them. POTUS says: "As the President, I think I should have the right to have a parachute, because I rule millions of people in the greatest nation of all." Beyonce says: "As one of the greatest singers of all-time, I think I should deserve to be safe. I bring tears and laughter to millions of people, and I'm an important contributor to pop music." Bill Gates says: "As one of the richest successful company owners, I think I should live because I'm on top of the economics cycle, creating jobs and incomes for millions of people. I am a wealthy and intelligent man." Finally, the Pope says: "I'm an old, religious man. I lived a life that's full, I helped millions of people find their way through God, I'm ready to let go of a parachute and to face my fate." Which one of them will abandon the parachute and die?
Did I ever mention that the plane was crashing? No one's gonna die.
79.48 %
83 votes

Four cars come to a four way stop, all coming from a different direction. They can't decide who got there first, so they all entered the intersection at the same time. They do not crash into each other. How is this possible?
They all made right hand turns.
79.46 %
77 votes