cleanlogic100 men are in a room, each wearing either a white or black hat. Nobody knows the color of his own hat, although everyone can see everyone else's hat. The men are not allowed to communicate with each other at all (and thus nobody will ever be able to figure out the color of his own hat).
The men need to line up against the wall such that all the men with black hats are next to each other, and all the men with white hats are next to each other. How can they do this without communicating? You can assume they came up with a shared strategy before coming into the room.

The men go to stand agains the wall one at a time. If a man goes to stand against the wall and all of the men already against the wall have the same color hat, then he just goes and stands at either end of the line. However, if a man goes to stand against the wall and there are men with both black and white hats already against the wall, he goes and stands between the two men with different colored hats. This will maintain the state that the line contains men with one colored hats on one side, and men with the other colored hats on the other side, and when the last man goes and stands against the wall, we'll still have the desired outcome.

logic Once upon a time there was a dad and 3 kids. When the kids were adults, the dad was old and Death came to take the dad. The first son, who became a lawyer, begged Death to let the dad live a few more years. Death agreed. When Death came back, the second son, who became a doctor begged Death to let his father live a few more days. Death agreed. When Death came back the third son, who became a priest begged Death to let the dad live till that candle wick burned out and he pointed to a candle. Death agreed. The third son knew Death wouldn't come back, and he didn't. Why not?

The third son went over and blew out the candle after Death left because the son said "till the candle wick burns out", not "till the candle burns out".

cleanloveshortWhat makes grown men cry, but humanity would go extinct without it?

Love.

what am II dig out tiny caves, and store gold and silver in them.
I also build bridges of silver and make crowns of gold.
They are the smallest you could imagine.
Sooner or later everybody needs my help,
yet many people are afraid to let me help them.
What am I?

A dentist.

logicAs I was going to St. Ives
I met a man with seven wives
The seven wives had seven sacks
The seven sacks had seven cats
The seven cats had seven kits
Kits, cats, sacks and wives
How many were going to St. Ives?

One person is going to St. Ives (the narrator). Because the narrator "met" all of the others mentioned in the poem, this implies that they walked past each other in opposite directions, and thus none of the wives, sacks, cats, or kits was actually headed to St. Ives.
If you (like many) think this answer is a bit silly, you can assume that all the people, sacks, and animals mentioned were heading for St. Ives. In this case, we would have 1 narrator + 1 man + 7 wives + 49 sacks + 343 cats + 2401 kits = 2802 total going to St. Ives. However, this isn't the traditional answer.

logicmathYou are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck.
Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this.
How can you accomplish this seemingly impossible task?

Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started.
This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.

logicYour friend pulls out a perfectly circular table and a sack of quarters, and proposes a game.
"We'll take turns putting a quarter on the table," he says. "Each quarter must lay flat on the table, and cannot sit on top of any other quarters. The last person to successfully put a quarter on the table wins."
He gives you the choice to go first or second. What should you do, and what should your strategy be to win?

You should go first, and put a quarter at the exact center of the table.
Then, each time your opponent places a quarter down, you should place your next quarter in the symmetric position on the opposite side of the table.
This will ensure that you always have a place to set down our quarter, and eventually your oppponent will run out of space.

logicYou have twelve balls, identical in every way except that one of them weighs slightly less or more than the balls.
You have a balance scale, and are allowed to do 3 weighings to determine which ball has the different weight, and whether the ball weighs more or less than the other balls.
What process would you use to weigh the balls in order to figure out which ball weighs a different amount, and whether it weighs more or less than the other balls?

Take eight balls, and put four on one side of the scale, and four on the other.
If the scale is balanced, that means the odd ball out is in the other 4 balls.
Let's call these 4 balls O1, O2, O3, and O4.
Take O1, O2, and O3 and put them on one side of the scale, and take 3 balls from the 8 "normal" balls that you originally weighed, and put them on the other side of the scale.
If the O1, O2, and O3 balls are heavier, that means the odd ball out is among these, and is heavier. Weigh O1 and O2 against each other. If one of them is heavier than the other, this is the odd ball out, and it is heavier. Otherwise, O3 is the odd ball out, and it is heavier.
If the O1, O2, and O3 balls are lighter, that means the odd ball out is among these, and is lighter. Weigh O1 and O2 against each other. If one of them is lighter than the other, this is the odd ball out, and it is lighter. Otherwise, O3 is the odd ball out, and it is lighter.
If these two sets of 3 balls weigh the same amount, then O4 is the odd ball out. Weight it against one of the "normal" balls from the first weighing. If O4 is heavier, then it is heavier, if it's lighter, then it's lighter.
If the scale isn't balanced, then the odd ball out is among these 8 balls.
Let's call the four balls on the side of the scale that was heavier H1, H2, H3, and H4 ("H" for "maybe heavier").
Let's call the four balls on the side of the scale that was lighter L1, L2, L3, and L4 ("L" for "maybe lighter").
Let's also call each ball from the 4 in the original weighing that we know aren't the odd balls out "Normal" balls.
So now weigh [H1, H2, L1] against [H3, L2, Normal].
-If the [H1, H2, L1] side is heavier (and thus the [H3, L2, Normal] side is lighter), then this means that either H1 or H2 is the odd ball out and is heavier, or L2 is the odd ball out and is lighter.
-So measure [H1, L2] against 2 of the "Normal" balls.
-If [H1, L2] are heavier, then H1 is the odd ball out, and is heavier.
-If [H1, L2] are lighter, then L2 is the odd ball out, and is lighter.
-If the scale is balanced, then H2 is the odd ball out, and is heavier.
-If the [H1, H2, L1] side is lighter (and thus the [H3, L2, Normal] side is heavier), then this means that either L1 is the odd ball out, and is lighter, or H3 is the odd ball out, and is heavier.
-So measure L1 and H3 against two "normal" balls.
-If the [L1, H3] side is lighter, then L1 is the odd ball out, and is lighter.
-Otherwise, if the [L1, H3] side is heavier, then H3 is the odd ball out, and is heavier.
If the [H1, H2, L1] side and the [H3, L2, Normal] side weigh the same, then we know that either H4 is the odd ball out, and is heavier, or one of L3 or L4 is the odd ball out, and is lighter.
So weight [H4, L3] against two of the "Normal" balls.
If the [H4, L3] side is heavier, then H4 is the odd ball out, and is heavier.
If the [H4, L3] side is lighter, then L3 is the odd ball out, and is lighter.
If the [H4, L3] side weighs the same as the [Normal, Normal] side, then L4 is the odd ball out, and is lighter.

logicA man was to be sentenced, and the judge told him, "You may make a statement. If it is true, I'll sentence you to four years in prison. If it is false, I'll sentence you to six years in prison." After the man made his statement, the judge decided to let him go free.What did the man say?

He said, "You'll sentence me to six years in prison." If it was true, then the judge would have to make it false by sentencing him to four years. If it was false, then he would have to give him six years, which would make it true. Rather than contradict his own word, the judge set the man free.

crazyfunnyWhy shouldn’t you tell an Easter egg a joke?

It might crack up.