Riddle #992

logicmath

Camel and Banana

The owner of a banana plantation has a camel. He wants to transport his 3000 bananas to the market, which is located after the desert. The distance between his banana plantation and the market is about 1000 kilometer. So he decided to take his camel to carry the bananas. The camel can carry at the maximum of 1000 bananas at a time, and it eats one banana for every kilometer it travels. What is the most bananas you can bring over to your destination?
First of all, the brute-force approach does not work. If the Camel starts by picking up the 1000 bananas and try to reach point B, then he will eat up all the 1000 bananas on the way and there will be no bananas left for him to return to point A. So we have to take an approach that the Camel drops the bananas in between and then returns to point A to pick up bananas again. Since there are 3000 bananas and the Camel can only carry 1000 bananas, he will have to make 3 trips to carry them all to any point in between. When bananas are reduced to 2000 then the Camel can shift them to another point in 2 trips and when the number of bananas left are <= 1000, then he should not return and only move forward. In the first part, P1, to shift the bananas by 1Km, the Camel will have to Move forward with 1000 bananas – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back Will carry the last 1000 bananas from point a and move forward – will eat up 1 banana Note: After point 5 the Camel does not need to return to point A again. So to shift 3000 bananas by 1km, the Camel will eat up 5 bananas. After moving to 200 km the Camel would have eaten up 1000 bananas and is now left with 2000 bananas. Now in the Part P2, the Camel needs to do the following to shift the Bananas by 1km. Move forward with 1000 bananas – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up this 1 banana in the way back Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward Note: After point 3 the Camel does not need to return to the starting point of P2. So to shift 2000 bananas by 1km, the Camel will eat up 3 bananas. After moving to 333 km the camel would have eaten up 1000 bananas and is now left with the last 1000 bananas. The Camel will actually be able to cover 333.33 km, I have ignored the decimal part because it will not make a difference in this example. Hence the length of part P2 is 333 Km. Now, for the last part, P3, the Camel only has to move forward. He has already covered 533 (200+333) out of 1000 km in Parts P1 & P2. Now he has to cover only 467 km and he has 1000 bananas. He will eat up 467 bananas on the way forward, and at point B the Camel will be left with only 533 Bananas.
85.53 %
58 votes

Similar riddles

See also best riddles or new riddles.

interviewlogicmath

The nine sacks of flour

The Miller next took the company aside and showed them nine sacks of flour that were standing as depicted in the sketch. "Now, hearken, all and some," said he, "while that I do set ye the riddle of the nine sacks of flour. And mark ye, my lords and masters, that there be single sacks on the outside, pairs next unto them, and three together in the middle thereof. By Saint Benedict, it doth so happen that if we do but multiply the pair, 28, by the single one, 7, the answer is 196, which is of a truth the number shown by the sacks in the middle. Yet it be not true that the other pair, 34, when so multiplied by its neighbour, 5, will also make 196. Wherefore I do beg you, gentle sirs, so to place anew the nine sacks with as little trouble as possible that each pair when thus multiplied by its single neighbour shall make the number in the middle." As the Miller has stipulated in effect that as few bags as possible shall be moved, there is only one answer to this puzzle, which everybody should be able to solve.
The way to arrange the sacks of flour is as follows: 2, 78, 156, 39, 4. Here each pair when multiplied by its single neighbour makes the number in the middle, and only five of the sacks need be moved. There are just three other ways in which they might have been arranged (4, 39, 156, 78, 2; or 3, 58, 174, 29, 6; or 6, 29, 174, 58, 3), but they all require the moving of seven sacks.
91.77 %
30 votes

logicmath

A hiking group are on a five day expedition

On the first day they cover one quarter of the total distance. The next day they cover one quarter of what is left. The following day they cover two fifths of the remainder and on the fourth day half of the remaining distance. The group now have 14 miles left, how many miles have they walked?
68.962962 miles
91.77 %
30 votes

logicmath

Cards in the dark

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck. Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this. How can you accomplish this seemingly impossible task?
Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started. This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.
91.71 %
51 votes

logicmath

Flipping Lockers

There are 1 million closed school lockers in a row, labeled 1 through 1,000,000. You first go through and flip every locker open. Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed. You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through. Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000). At the end of this, is locker 1,000,000 open or closed?
Locker 1,000,000 will be open. If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open. As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors). So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.
91.55 %
50 votes

logicmath

Appleland to Bananaville

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?
833 apples. Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go. Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind). Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.
91.22 %
48 votes

logicmath

A fly in between trains

Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide. If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?
The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.
91.22 %
48 votes

logicmathshort

What time is it?

A man gave one son 10 cents and another son was given 15 cents. What time is it?
1:45. The man gave away a total of 25 cents. He divided it between two people. Therefore, he gave a quarter to two.
91.22 %
48 votes

logicmath

New York Hair

You are visiting NYC when a man approaches you. "Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you. "I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet. What did the man say to prove his case?
This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald. So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head. You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.
91.04 %
47 votes

logicmath

Land of Brainopia

In the land of Brainopia, there are three races of people: Mikkos, who tell the truth all the time, Kikkos, who always tell lies, and Zikkos, who tell alternate false and true statements, in which the order is not known (i.e. true, false, true or false, true, false). When interviewing three Brainopians, a foreigner received the following statements: Person 1: I am a Mikko. Person 2: I am a Kikko. Person 3: a. They are both lying. b. I am a Zikko. Can you help the very confused foreigner determine who is who, assuming each person represents a different race?
Person 1 is a Miko. Person 2 is a Ziko. Person 3 is a Kikko.
90.86 %
46 votes

logicmath

How long was he walking

Every day, Jack arrives at the train station from work at 5 pm. His wife leaves home in her car to meet him there at exactly 5 pm, and drives him home. One day, Jack gets to the station an hour early, and starts walking home, until his wife meets him on the road. They get home 30 minutes earlier than usual. How long was he walking? Distances are unspecified. Speeds are unspecified, but constant. Give a number which represents the answer in minutes.
The best way to think about this problem is to consider it from the perspective of the wife. Her round trip was decreased by 30 minutes, which means each leg of her trip was decreased by 15 minutes. Jack must have been walking for 45 minutes.
90.86 %
46 votes