logicYou walk into a creepy house by yourself. There is no electricity, plumbing or ventilation. Inside you notice 3 doors with numbers on them. Once you open the doors you will die a particular way.
Door #1 You’ll be eaten by a lion who is hungry.
Door #2 You’ll be stabbed to death.
Door #3 There is an electric chair waiting for you.
Which door do you pick?

Door #3, Since There Is No Electricity To Harm You.

## Similar riddles

See also best riddles or new riddles.

funnylogicmathshortWhat do you get if you add 2 to 200 four times?

202 , 202 , 202 , 202.

logicshortIf you were to put a coin into an empty bottle and then insert a cork into the neck, how could you remove the coin without taking out the cork or breaking the bottle?

Push the cork into the bottle and shake the coin out.

logic Six glasses are in a row. The first three are filled with milk and the last three are empty. By moving only one glass, can you arrange them so that the full and the empty glasses alternate?

animalfunnylogicA black dog stands in the middle of an intersection in a town painted black. None of the street lights are working due to a power failure caused by a storm. A car with two broken headlights drives towards the dog but turns in time to avoid hitting him. How could the driver have seen the dog in time?

It was daylight.

logicshortA man was driving a truck at 60 mph. He did not have his headlights on and the moon was not up. Yet he did not hit the woman who crossed the road. How?

He was driving the truck during daytime.

cleanlogicshortwhat am IYou bury me when I am alive,
and dig me up
when I die.
What am I?

A plant.

logicmathA swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
How can the swan succesfully escape?

Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference).
From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore.
The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed.
The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run:
[0.75R feet + 1 millimeter] * 4 < R*pi
[This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.]
Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.

logicmathThe owner of a banana plantation has a camel. He wants to transport his 3000 bananas to the market, which is located after the desert. The distance between his banana plantation and the market is about 1000 kilometer. So he decided to take his camel to carry the bananas. The camel can carry at the maximum of 1000 bananas at a time, and it eats one banana for every kilometer it travels.
What is the most bananas you can bring over to your destination?

First of all, the brute-force approach does not work. If the Camel starts by picking up the 1000 bananas and try to reach point B, then he will eat up all the 1000 bananas on the way and there will be no bananas left for him to return to point A.
So we have to take an approach that the Camel drops the bananas in between and then returns to point A to pick up bananas again.
Since there are 3000 bananas and the Camel can only carry 1000 bananas, he will have to make 3 trips to carry them all to any point in between.
When bananas are reduced to 2000 then the Camel can shift them to another point in 2 trips and when the number of bananas left are <= 1000, then he should not return and only move forward.
In the first part, P1, to shift the bananas by 1Km, the Camel will have to
Move forward with 1000 bananas – Will eat up 1 banana in the way forward
Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back
Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward
Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back
Will carry the last 1000 bananas from point a and move forward – will eat up 1 banana
Note: After point 5 the Camel does not need to return to point A again.
So to shift 3000 bananas by 1km, the Camel will eat up 5 bananas.
After moving to 200 km the Camel would have eaten up 1000 bananas and is now left with 2000 bananas.
Now in the Part P2, the Camel needs to do the following to shift the Bananas by 1km.
Move forward with 1000 bananas – Will eat up 1 banana in the way forward
Leave 998 banana after 1 km and return with 1 banana – will eat up this 1 banana in the way back
Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward
Note: After point 3 the Camel does not need to return to the starting point of P2.
So to shift 2000 bananas by 1km, the Camel will eat up 3 bananas.
After moving to 333 km the camel would have eaten up 1000 bananas and is now left with the last 1000 bananas.
The Camel will actually be able to cover 333.33 km, I have ignored the decimal part because it will not make a difference in this example.
Hence the length of part P2 is 333 Km.
Now, for the last part, P3, the Camel only has to move forward. He has already covered 533 (200+333) out of 1000 km in Parts P1 & P2. Now he has to cover only 467 km and he has 1000 bananas.
He will eat up 467 bananas on the way forward, and at point B the Camel will be left with only 533 Bananas.

logicmathYou are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started.
It turns out there are an infinite number of different points on earth where you might be. Can you describe them all?
It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.

One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile.
To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes.
To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.

logicA sign on the barber's door says "I shave only those who do not shave themselves." Does the barber shave himself?

There is no answer, it's a paradox. It cannot be made to work.