Riddle #785

logic

Egg challenge

An egg has to fall 100 feet, but it can't break upon landing (or in the air). Its fall can't be slowed down, nor can its landing be cushioned in any way. How is it done?
Drop it from more than 100 feet high. It won't break for the first 100 feet.
93.39 %
38 votes

Similar riddles

See also best riddles or new riddles.

logicmysteryscary

Young girl was found murdered

On the first day of the school a young girl was found murdered. Police suspect four male teachers and question them. They were asked what they were doing at 8:00 am. Mr. Walter: I was driving to school and I was late. Mr. Thomas: I was checking English exam papers. Mr. Benjamin: I was reading the newspaper. Mr. Calvin: I was with my wife in my office. The police arrested the killer. How did the police find the murderer?
Mr.Thomas as he cannot be checking exam papers on the first day of school.
80.98 %
77 votes

cleanlogic

He is my son

A boy was rushed to the hospital emergency room. The ER doctor saw the boy and said, "I cannot operate on this boy. He is my son." But the doctor was not the boy's father. How could that be?
The doctor was his mom.
88.79 %
37 votes

logicmysteryscary

The Smith family

The Smith family is a very wealthy family that lives in a big, circular home. One morning, Mr. Smith woke up and found his gardener's body. He knew it was one of his employees who had killed him. So he asked them what they were doing in the morning and he got these replies. Driver: "I was outside washing the car." Maid: "I was dusting the corners of the house." Cook: "I was starting to make lunch for later." From the replies he knew who the killer was. Can you guess who it was?
The maid, because they lived in a circular house and she was apparently "dusting the corners" of the house at the time of the murder - the house is round, therefore it has no corners.
71.64 %
92 votes

logic

Suitcase Locks

A man needs to send important documents to his friend across the country. He buys a suitcase to put the documents in, but he has a problem: the mail system in his country is very corrupt, and he knows that if he doesn't lock the suitcase, it will be opened by the post office and his documents will be stolen before they reach his friend. There are lock stores across the country that sell locks with keys. The only problem is that if he locks the suitcase, he has no way to send the key to his friend so that the friend will be able to open the lock: if he doesn't send the key, then the friend can't open the lock, and if he puts the key in the suitcase, then the friend won't be able to get to the key. The suitcase is designed so that any number of locks can be put on it, but the man figures that putting more than one lock on the suitcase will only compound the problem. After a few days, however, he figures out how to safely send the documents. He calls his friend who he's sending the documents to and explains the plan. What is the man's plan?
The plan is this: 1. The man will put a lock on the suitcase, keep the key, and send the suitcase to his friend. 2. The friend will then put his own lock on the suitcase as well, keep the key to that lock, and send the suitcase back to the man. 3. The man will use his key to remove his lock from the suitcase, and send it back to the friend. 4. The friend will remove his own lock from the suitcase and get to the documents.
93.39 %
38 votes

animallogicmath

Ants on a Board

There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute. The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge. From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.
The longest amount of time that could pass would be 1 minute. If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other. In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions. So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.
93.84 %
41 votes

logicmath

Strange Miles

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
93.84 %
41 votes

logicmathshort

Half of two plus two

Is half of two plus two equal to two or three?
Three. It seems that it could almost be either, but if you follow the mathematical orders of operation, division is performed before addition. So... half of two is one. Then add two, and the answer is three.
93.98 %
42 votes

logicmath

Anagram Checker

Two words are anagrams if and only if they contain the exact same letters with the exact same frequency (for example, "name" and "mean" are anagrams, but "red" and "deer" are not). Given two strings S1 and S2, which each only contain the lowercase letters a through z, write a program to determine if S1 and S2 are anagrams. The program must have a running time of O(n + m), where n and m are the lengths of S1 and S2, respectively, and it must have O(1) (constant) space usage.
First create an array A of length 26, representing the counts of each letter of the alphabet, with each value initialized to 0. Iterate through each character in S1 and add 1 to the corresponding entry in A. Once this iteration is complete, A will contain the counts for the letters in S1. Then, iterate through each character in S2, and subtract 1 from each corresponding entry in A. Now, if the each entry in A is 0, then S1 and S2 are anagrams; otherwise, S1 and S2 aren't anagrams. Here is pseudocode for the procedure that was described: def areAnagrams(S1, S2) A = new Array(26) A.initializeValues(0) for each character in S1 arrayIndex = mapCharacterToNumber(character) //maps "a" to 0, "b" to 1, "c" to 2, etc... A[arrayIndex] += 1 end for each character in S2 arrayIndex = mapCharacterToNumber(character) A[arrayIndex] -= 1 end for (i = 0; i < 26; i++) if A[i] != 0 return false end end return true end
93.55 %
39 votes

logicmystery

Kidnapped kid

A rich man's son was kidnapped. The ransom note told him to bring a valuable diamond to a phone booth in the middle of a public park. Plainclothes police officers surrounded the park, intending to follow the criminal or his messenger. The rich man arrived at the phone booth and followed instructions but the police were powerless to prevent the diamond from leaving the park and reaching the crafty villain. What did he do?
This is a true story from Taiwan. When the rich man reached the phone booth he found a carrier pigeon in a cage. It had a message attached telling the man to put the diamond in a small bag which was around the pigeon's neck and to release the bird. When the man did this the police were powerless to follow the bird as it returned across the city to its owner.
89.25 %
53 votes