## Just one match

If you had one match and entered a room in which there were a kerosene lamp, an oil burner, and a wood burning stove, which would you light first?

The match.

If you had one match and entered a room in which there were a kerosene lamp, an oil burner, and a wood burning stove, which would you light first?

The match.

See also best riddles or new riddles.

A man entered his house and was about to hang up his coat when he heard his wife shout;
"No John! Don’t do it!"
There was a shot and he could hear his wife fall down. When he entered the kitchen he saw his wife and the gun lying on the floor. There was a police officer, a doctor, and a lawyer standing next to her. Peter immediately knew that the police officer had shot her.
But how did he come to know?

The police officer was the only man while the doctor and lawyer were ladies. Peter on a second glance would also read the police officer’s name on his name tag as "John". Peter’s wife was saying, "No John! Don’t do it!" to the police officer and the police officer shot her anyway.

A man was found dead with a cassette recorder in one hand and a gun in the other. When the police came in, they immediately pressed the play button on the cassette. He said "I have nothing else to live for. I can't go on," then the sound of a gunshot. After listening to the cassette tape, the police knew that it was not a suicide, but a homicide. How did they know?

If the man shot himself while he was recording, how did he rewind the cassette tape?

What has 4 wheels and flies?

A garbage truck.

You have just purchased a small company called Company X. Company X has N employees, and everyone is either an engineer or a manager. You know for sure that there are more engineers than managers at the company.
Everyone at Company X knows everyone else's position, and you are able to ask any employee about the position of any other employee. For example, you could approach employee A and ask "Is employee B an engineer or a manager?" You can only direct your question to one employee at a time, and can only ask about one other employee at a time. You're allowed to ask the same employee multiple questions if you want.
Your goal is to find at least one engineer to solve a huge problem that has just hit the company's factory. The problem is so urgent that you only have time to ask N-1 total questions.
The major problem with questioning the employees, however, is that while the engineers will always tell you the truth about other employees' roles, the managers may lie to you if they like. You can assume that the managers will do their best to confuse you.
How can you find at least one engineer by asking at most N-1 questions?

You can find at least one engineer using the following process:
Put all of the employees in a conference room. If there happen to be an even number of employees, pick one at random and send him home for the day so that we start with an odd number of employees. Note that there will still be more engineers than managers after we send this employee home.
Then call them out one at a time in any order. You will be forming them into a line as follows:
If there is nobody currently in the line, put the employee you just called out in the line.
Otherwise, if there is anybody in the line, then we do the following. Let's call the employee currently at the front of the line Employee_Front, and call the employee who we just called out of the conference room Employee_Next.
So ask Employee_Front if Employee_Next is a manager or an engineer.
If Employee_Front says "manager", then send both Employee_Front and Employee_Next home for the day.
However, if Employee_Front says "engineer", then put Employee_Next at the front of the line.
Keep doing this until you've called everyone out of the conference room. Notice that at this point, you'll have asked N-1 or less questions (you asked at most one question each time you called an employee out except for the first employee, when you didn't ask a question, so that's at most N-1 questions).
When you're done calling everyone out of the conference room, the person at the front of the line is an engineer. So you've found your engineer!
But the real question: how does this work?
We can prove this works by showing a few things.
First, let's show that if there are any engineers in the line, then they must be in front of any managers.
We'll show this with a proof by contradiction. Assume that there is a manager in front of an engineer somewhere in the line. Then it must have been the case that at some point, that engineer was Employee_Front and that manager was Employee_Next. But then Employee_Front would have said "manager" (since he is an engineer and always tells the truth), and we would have sent them both home. This contradicts their being in the line at all, and thus we know that there can never be a manager in front of an engineer in the line.
So now we know that after the process is done, if there are any engineers in the line, then they will be at the front of the line. That means that all we have to prove now is that there will be at least one engineer in the line at the end of the process, and we'll know that there will be an engineer at the front.
So let's show that there will be at least one engineer in the line. To see why, consider what happens when we ask Employee_Front about Employee_Next, and Employee_Front says "manager". We know for sure that in this case, Employee_Front and Employee_Next are not both engineers, because if this were the case, then Employee_Front would have definitely says "engineer". Put another way, at least one of Employee_Front and Employee_Next is a manager. So by sending them both home, we know we are sending home at least one manager, and thus, we are keeping the balance in the remaining employees that there are more engineers than managers.
Thus, once the process is over, there will be more engineers than managers in the line (this is also sufficient to show that there will be at least one person in the line once the process is over). And so, there must be at least one engineer in the line.
Put altogether, we proved that at the end of the process, there will be at least one engineer in the line and that any engineers in the line must be in front of any managers, and so we know that the person at the front of the line will be an engineer.

A farmer is travelling with a fox, a sheep and a small sack of hay. He comes to a river with a small boat in it. The boat can only support the farmer and one other animal/item. If the farmer leaves the fox alone with the sheep, the fox will eat the sheep. And if the farmer leaves the sheep alone with the hay, the sheep will eat the hay.
How can the farmer get all three as well as himself safely across the river?

The farmer takes the sheep across the river, then returns back.
The farmer takes the fox across the river.
The farmer takes the sheep back to the first side of the river.
The farmer leaves the sheep back on the first side of the river, and takes the hay to the other side.
The farmer returns to the first side of the river.
The farmer brings the sheep back to the second side.

As I was going to St. Ives
I met a man with seven wives
The seven wives had seven sacks
The seven sacks had seven cats
The seven cats had seven kits
Kits, cats, sacks and wives
How many were going to St. Ives?

One person is going to St. Ives (the narrator). Because the narrator "met" all of the others mentioned in the poem, this implies that they walked past each other in opposite directions, and thus none of the wives, sacks, cats, or kits was actually headed to St. Ives.
If you (like many) think this answer is a bit silly, you can assume that all the people, sacks, and animals mentioned were heading for St. Ives. In this case, we would have 1 narrator + 1 man + 7 wives + 49 sacks + 343 cats + 2401 kits = 2802 total going to St. Ives. However, this isn't the traditional answer.

Two mothers and two daughters went out to eat, everyone ate one burger, yet only three burgers were eaten in all. How is this possible?

They were a grandmother, mother and daughter.

What happened when wheel was invented?

It caused a revolution.

The Pope, Beyonce, Barack Obama, and Bill Gates are on the same plane. There are only 3 parachutes left for the 4 of them. Obama says: "As the President, I think I should have the right to have a parachute, because I rule millions of people in the greatest nation of all." Beyonce says: "As one of the greatest singers of all-time, I think I should deserve to be safe. I bring tears and laughter to millions of people, and I'm an important contributor to pop music." Bill Gates says: "As one of the richest successful company owners, I think I should live because I'm on top of the economics cycle, creating jobs and incomes for millions of people. I am a wealthy and intelligent man." Finally, the Pope says: "I'm an old, religious man. I lived a life that's full, I helped millions of people find their way through God, I'm ready to let go of a parachute and to face my fate." Which one of them will abandon the parachute and die?

Did I ever mention that the plane was crashing? No one's gonna die.

There are several chickens and rabbits in a cage (with no other types of animals). There are 72 heads and 200 feet inside the cage. How many chickens are there, and how many rabbits?

Let c be the number of chickens, and r be the number of rabbits.
r + c = 72
4r + 2c = 200
To solve the equations, we multiply the first by two, then subtract the second.
2r + 2c = 144
2r = 56
r = 28
c = 44
So there are 44 chickens and 28 rabbits in the cage.