You have twelve balls, identical in every way except that one of them weighs slightly less or more than the balls.
You have a balance scale, and are allowed to do 3 weighings to determine which ball has the different weight, and whether the ball weighs more or less than the other balls.
What process would you use to weigh the balls in order to figure out which ball weighs a different amount, and whether it weighs more or less than the other balls?

Take eight balls, and put four on one side of the scale, and four on the other.
If the scale is balanced, that means the odd ball out is in the other 4 balls.
Let's call these 4 balls O1, O2, O3, and O4.
Take O1, O2, and O3 and put them on one side of the scale, and take 3 balls from the 8 "normal" balls that you originally weighed, and put them on the other side of the scale.
If the O1, O2, and O3 balls are heavier, that means the odd ball out is among these, and is heavier. Weigh O1 and O2 against each other. If one of them is heavier than the other, this is the odd ball out, and it is heavier. Otherwise, O3 is the odd ball out, and it is heavier.
If the O1, O2, and O3 balls are lighter, that means the odd ball out is among these, and is lighter. Weigh O1 and O2 against each other. If one of them is lighter than the other, this is the odd ball out, and it is lighter. Otherwise, O3 is the odd ball out, and it is lighter.
If these two sets of 3 balls weigh the same amount, then O4 is the odd ball out. Weight it against one of the "normal" balls from the first weighing. If O4 is heavier, then it is heavier, if it's lighter, then it's lighter.
If the scale isn't balanced, then the odd ball out is among these 8 balls.
Let's call the four balls on the side of the scale that was heavier H1, H2, H3, and H4 ("H" for "maybe heavier").
Let's call the four balls on the side of the scale that was lighter L1, L2, L3, and L4 ("L" for "maybe lighter").
Let's also call each ball from the 4 in the original weighing that we know aren't the odd balls out "Normal" balls.
So now weigh [H1, H2, L1] against [H3, L2, Normal].
-If the [H1, H2, L1] side is heavier (and thus the [H3, L2, Normal] side is lighter), then this means that either H1 or H2 is the odd ball out and is heavier, or L2 is the odd ball out and is lighter.
-So measure [H1, L2] against 2 of the "Normal" balls.
-If [H1, L2] are heavier, then H1 is the odd ball out, and is heavier.
-If [H1, L2] are lighter, then L2 is the odd ball out, and is lighter.
-If the scale is balanced, then H2 is the odd ball out, and is heavier.
-If the [H1, H2, L1] side is lighter (and thus the [H3, L2, Normal] side is heavier), then this means that either L1 is the odd ball out, and is lighter, or H3 is the odd ball out, and is heavier.
-So measure L1 and H3 against two "normal" balls.
-If the [L1, H3] side is lighter, then L1 is the odd ball out, and is lighter.
-Otherwise, if the [L1, H3] side is heavier, then H3 is the odd ball out, and is heavier.
If the [H1, H2, L1] side and the [H3, L2, Normal] side weigh the same, then we know that either H4 is the odd ball out, and is heavier, or one of L3 or L4 is the odd ball out, and is lighter.
So weight [H4, L3] against two of the "Normal" balls.
If the [H4, L3] side is heavier, then H4 is the odd ball out, and is heavier.
If the [H4, L3] side is lighter, then L3 is the odd ball out, and is lighter.
If the [H4, L3] side weighs the same as the [Normal, Normal] side, then L4 is the odd ball out, and is lighter.

A man was found dead with a cassette recorder in one hand and a gun in the other.
When the police came in, they immediately pressed the play button on the cassette.
He said "I have nothing else to live for. I can't go on," then the sound of a gunshot.
After listening to the cassette tape, the police knew that it was not a suicide, but a homicide.
How did they know?

If the man shot himself while he was recording, how did he rewind the cassette tape?

There are 1 million closed school lockers in a row, labeled 1 through 1,000,000.
You first go through and flip every locker open.
Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed.
You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through.
Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000).
At the end of this, is locker 1,000,000 open or closed?

Locker 1,000,000 will be open.
If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open.
As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors).
So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.

100 men are in a room, each wearing either a white or black hat. Nobody knows the color of his own hat, although everyone can see everyone else's hat. The men are not allowed to communicate with each other at all (and thus nobody will ever be able to figure out the color of his own hat).
The men need to line up against the wall such that all the men with black hats are next to each other, and all the men with white hats are next to each other. How can they do this without communicating? You can assume they came up with a shared strategy before coming into the room.

The men go to stand agains the wall one at a time. If a man goes to stand against the wall and all of the men already against the wall have the same color hat, then he just goes and stands at either end of the line. However, if a man goes to stand against the wall and there are men with both black and white hats already against the wall, he goes and stands between the two men with different colored hats. This will maintain the state that the line contains men with one colored hats on one side, and men with the other colored hats on the other side, and when the last man goes and stands against the wall, we'll still have the desired outcome.

A man comes to a small hotel where he wishes to stay for 7 nights. He reaches into his pockets and realizes that he has no money, and the only item he has to offer is a gold chain, which consists of 7 rings connected in a row (not in a loop).
The hotel proprietor tells the man that it will cost 1 ring per night, which will add up to all 7 rings for the 7 nights.
"Ok," the man says. "I'll give you all 7 rings right now to pre-pay for my stay."
"No," the proprietor says. "I don't like to be in other people's debt, so I cannot accept all the rings up front."
"Alright," the man responds. "I'll wait until after the seventh night, and then give you all of the rings."
"No," the proprietor says again. "I don't like to ever be owed anything. You'll need to make sure you've paid me the exact correct amount after each night."
The man thinks for a minute, and then says "I'll just cut each of my rings off of the chain, and then give you one each night."
"I do not want cut rings," the proprietor says. "However, I'm willing to let you cut one of the rings if you must."
The man thinks for a few minutes and then figures out a way to abide by the proprietor's rules and stay the 7 nights in the hotel. What is his plan?

The man cuts the ring that is third away from the end of the chain. This leaves him with 3 smaller chains of length 1, 2, and 4. Then, he gives rings to the proprietor as follows:
After night 1, give the proprietor the single ring
After night 2, take the single ring back and give the proprietor the 2-ring chain
After night 3, give the proprietor the single ring, totalling 3 rings with the proprietor
After night 4, take back the single ring and the 2-ring chain, and give the proprietor the 4-ring chain
After night 5, give the proprietor the single ring, totalling 5 rings with the proprietor
After night 6, take back the single ring and give the proprietor the 2-ring chain, totalling 6 rings with the proprietor
After night 7, give the proprietor the single ring, totalling 7 rings with the proprietor

If a farmer has 5 haystacks in one field and 4 haystacks in the other field, how many haystacks would he have if he combined them all in the center field?

One. If he combines all of his haystacks, they all become one big stack.