Riddle #1104

King has no family

A king has no sons, no daughters, and no queen. For this reason he must decide who will take the throne after he dies. To do this he decides that he will give all of the children of the kingdom a single seed. Whichever child has the largest, most beautiful plant will earn the throne; this being a metaphor for the kingdom. At the end of the contest all of the children came to the palace with their enormous and beautiful plants in hand. After he looks at all of the children's pots, he finally decides that the little girl with an empty pot will be the next Queen. Why did he choose this little girl over all of the other children with their beautiful plants?
The king gave them all fake seeds and the little girl was the only honest child who didn't switch seeds.
67.80 %

79.77 %

Course of expensive medication

You've been placed on a course of expensive medication in which you are to take one tablet of Plusin and one tablet of Minusin daily. You must be careful that you take just one of each because taking more of either can have serious side effects. Taking Plusin without taking Minusin, or vice versa, can also be very serious, because they must be taken together in order to be effective. In summary, you must take exactly one of the Plusin pills and one of the Minusin pills at one time. Therefore, you open up the Plusin bottle, and you tap one Plusin pill into your hand. You put that bottle aside and you open the Minusin bottle. You do the same, but by mistake, two Minusins fall into your hand with the Plusin pill. Now, here's the problem. You weren't watching your hand as the pills fell into it, so you can't tell the Plusin pill apart from the two Minusin pills. The pills look identical. They are both the same size, same weight (10 micrograms), same color (Blue), same shape (perfect square), same everything, and they are not marked differently in any way. What are you going to do? You cannot tell which pill is which, and they cost \$500 a piece, so you cannot afford to throw them away and start over again. How do you get your daily dose of exactly one Plusin and exactly one Minusin without wasting any of the pills?
Carefully cut each of the three pills in half, and carefully separate them into two piles, with half of each pill in each pile. You do not know which pill is which, but you are 100% sure that each of the two piles now contains two halves of Minusin and half of Plusin. Now go back into the Plusin bottle, take out a pill, cut it in half, and add one half to each stack. Now you have two stacks, each one containing two halves of Plusin and two halves of Minusin. Take one stack of pills today, and save the second stack for tomorrow.
79.46 %

Rich old man and his will

One day a really rich old man with two sons died. In his will he said that he would give one of his sons all of his fortune. He gave each of his sons a horse and said they would compete in a horse race from Los Angeles to Sacramento, but the son whose horse came in second would get the money. So one day they started the race. After one whole day they had only ridden one mile. At night they decided they should stop at a hotel. While they were booking in they told their problem to the wise old clerk, who made a suggestion. The next day the two brothers rode as fast as they could. What did the clerk suggest that they do?
The clerk told them to swap horses. The father said that whoever's horse crossed the finish line second would get the money. He didn't say that the owner of the horse had to be on it.
79.19 %

Monk on a Path

A monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain. Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.
Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain). Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.
79.19 %

Men at work

Two men working at a construction site were up for a challenge, and they were pretty mad at each other. Finally, at lunch break, they confronted one another. One man, obviously stronger, said "See that wheelbarrow? I'm willin' to bet \$100 (that's all I have in my wallet here) that you can't wheel something to that cone and back that I can't do twice as far. Do you have a bet?" The other man, too dignified to decline, shook his hand, but he had a plan formulating. He looked at the objects lying around: a pile of 400 bricks, a steel beam, the 10 men that had gathered around to watch, his pickup truck, a stack of ten bags of concrete mix, and then he finalized his plan. "All right," he said, and revealed his object. That night, the strong man went home thoroughly teased and \$100 poorer. What did the other man choose?
He looked the man right in the eye and said "get in."
79.00 %

Once upon a time there was a dad and 3 kids. When the kids were adults, the dad was old and Death came to take the dad. The first son, who became a lawyer, begged Death to let the dad live a few more years. Death agreed. When Death came back, the second son, who became a doctor begged Death to let his father live a few more days. Death agreed. When Death came back the third son, who became a priest begged Death to let the dad live till that candle wick burned out and he pointed to a candle. Death agreed. The third son knew Death wouldn't come back, and he didn't. Why not?
The third son went over and blew out the candle after Death left because the son said "till the candle wick burns out", not "till the candle burns out".
78.73 %

Strange Miles

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
78.61 %

Robbery

Emily had used the mute button during her conversation with Anna so that all Anna heard was: "call...help...emergency...please hurry". Anna, sensing something was wrong, called the police and told them Emily's address. The police were able to come to Emily's house in time to catch the perpetrator.
78.55 %

The best archer ever

A duke was hunting in the forest with his men-at-arms and servants when he came across a tree. Upon it, archery targets were painted and smack in the middle of each was an arrow. "Who is this incredibly fine archer?" cried the duke. "I must find him!" After continuing through the forest for a few miles he came across a small boy carrying a bow and arrow. Eventually the boy admitted that it was he who shot the arrows plumb in the center of all the targets. "You didn't just walk up to the targets and hammer the arrows into the middle, did you?" asked the duke worriedly. "No my lord. I shot them from a hundred paces. I swear it by all that I hold holy." "That is truly astonishing," said the duke. "I hereby admit you into my service." The boy thanked him profusely. "But I must ask one favor in return," the duke continued. "You must tell me how you came to be such an outstanding shot." How'd he get to be such a good shot?
The boy shot the arrow, then painted the circle around it.
78.55 %