Four cars come to a four way stop, all coming from a different direction. They can't decide who got there first, so they all entered the intersection at the same time. They do not crash into each other. How is this possible?

With thieves I consort,
with the vilest, in short,
I'm quite at ease in depravity;
Yes all divines use me,
And savants can't lose me,
For I am the center of gravity.

Emperor Akbar once ruled over India. He was a wise and intelligent ruler; and he had in his court the Nine Gems, his nine advisors, who were each known for a particular skill. One of these Gems was Birbal, known for his wit and wisdom. The story below is one of the examples of his wit. Do you have it in you to find the answer?
One day the Emperor Akbar stumbled on a small rock in the royal gardens and momentarily went off balance. He was in a bad mood that day and the incident only served to make him more angry. Finding a target for his mood of the day, he ordered the gardener's arrest and execution. Birbal heard of this and visited the gardener in the cell where he was being held awaiting execution. Birbal had known the gardener for many years and also knew of the gardener's immense respect and sense of loyalty for the king. He decided to help the gardener escape the death sentence and explained his plan to the gardener, who reluctantly agreed to go along.
The next day the gardener was asked what his last wish was before he was hanged, as was custom. The gardener requested an audience with the emperor. This wish was granted, but when the man neared the throne he tried to attack the emperor. The emperor was shocked and demanded an explanation. The gardener looked at Birbal, who stepped forward and explained why the gardener had attacked the emperor. The emperor immediately realised how unjust he had been and ordered the release of the gardener. How did Birbal manage this?

"Your Majesty," said Birbal, "there is probably no person more loyal to you than this unfortunate gardener. Fearing that people would say you hanged him for a silly reason and question your sense of justice, he went out of his way to give you a genuine reason for hanging him."

I move very slowly at an imperceptible rate, although I take my time, I am never late. I accompany life, and survive past demise, I am viewed with esteem in many women's eyes. What am I?

Handel has been killed and Beethoven is on the case. He has interviewed the four suspects and their statements are shown below. Each suspect has said two sentences. One sentence of each suspect is a lie and one sentence is the truth. Help Beethoven figure out who the killer is.
Joplin: I did not kill Handel. Either Grieg is the killer or none of us is.
Grieg: I did not kill Handel. Gershwin is the killer.
Strauss: I did not kill Handel. Grieg is lying when he says Gershwin is the killer.
Gershwin: I did not kill Handel. If Joplin did not kill him, then Grieg did.
Who is the killer?

Strauss is the one who killed Handel. You need to take turns assuming someone is the killer; that means everyone's second sentence is a lie. If Joplin was the killer, Grieg's lie mixed with Strauss' counteracts the other. If Grieg was the killer, Gershwin would need to be a killer too. If Gershwin was the killer, Gershwin would need to be a killer too. If Gershwin was the killer, Grieg and Strauss counter each other again, but with Strauss, everything would fit in.

What is the least number of people that need to be in a room such that there is greater than a 50% chance that at least two of the people have the same birthday?

Only 23 people need to be in the room.
Our first observation in solving this problem is the following:
(the probability that at least 2 people have the same birthday + the probability that nobody has the same birthday) = 1.0
What this means is that there is a 100% chance that EITHER everybody in the room has a different birthday, OR at least two people in the room have the same birthday (and these probabilities don't add up to more than 1.0 because they cover mutually exclusive situations).
With some simple re-arranging of the formula, we get:
the probability that at least 2 people have the same birthday = (1.0 - the probability that nobody has the same birthday)
So now if we can find the probability that nobody in the room has the same birthday, we just subtract this value from 1.0 and we'll have our answer.
The probability that nobody in the room has the same birthday is fairly straightforward to calculate. We can think of this as a "selection without replacement" problem, where each person "selects" a birthday at random, and we then have to figure out the probability that no two people select the same birthday. The first selection has a 365/365 chance of being different than the other birthdays (since none have been selected yet). The next selection has a 364/365 chance of being different than the 1 birthday that has been selected so far. The next selection has a 363/365 chance of being different than the 2 birthdays that have been selected so far.
These probabilities are multiplied together since each is conditional on the previous. So for example, the probability that nobody in a room of 3 people have the same birthday is (365/365 * 364/365 * 363/365) =~ 0.9918
More generally, if there are n people in a room, then the probability that nobody has the same birthday is (365/365 * 364/365 * ... * (365-n+2)/365 * (365-n+1)/365)
We can plug in values for n. For n=22, we get that the probability that nobody has the same birthday is 0.524, and thus the probabilty that at least two people have the same birthday is (1.0 - 0.524) = 0.476 = 47.6%.
Then for n=23, we get that the probability that nobody has the same birthday is 0.493, and thus the probabilty that at least two people have the same birthday is 1.0 - 0.493) = 0.507 = 50.7%. Thus, once we get to 23 people we have reached the 50% threshold.

Bill and Stacie are delighted when their new baby, Patrick, is born on February 29th, 2008. They think it's good luck to for him to be born on the special day of the leap year. But then they start thinking about when to celebrate his next birthday. After some thought, they decide that they want to celebrate Patrick's next birthday (when he turns 1) exactly 365 days after he was born, just like most people do.
What will be the date of this birthday?

The date of the birthday will be February 28th, 2009.
At first it might seem like his birthday should be March 1st, 2009, since February 29th is the day after February 28th in the leap year, while March 1st is the day after February 28th in non-leap years. But this is the wrong way to think about it.
The right way to think about it is that 365 days after the day before March 1st is always February 28th, regardless of whether it's a leap year or not. So Patrick's birthday will be February 28th.

A man owned a casino and invited some friends.
It was a dark stormy night, and they all placed their money on the table right before the lights went out.
When the lights came back on, the money was gone.
The owner put a rooster in an old rusty tea kettle.
He told everyone to get in line and touch the kettle after he turned the lights off, and the rooster will crow when the robber touched it.
After everyone touched it, the rooster didn't crow, so the man told everyone to hold out their hands.
After examining all the hands, he pointed out who the robber was.
How did he know who stole the money?

Because the tea kettle was rusty, whoever touched it would have rust on their hands. The robber didn't touch the kettle, therefore he was the only one whose hands weren't rusty.

A man is found murdered on a Sunday morning. His wife calls the police, who question the wife and the staff, and are given the following alibis: the wife says she was sleeping, the butler was cleaning the closet, the gardener was picking vegetables, the maid was getting the mail, and the cook was preparing breakfast.
Immediately, the police arrest the murdered. Who did it and how did the police know?