Best long riddles

cleanpoemssimplelogic

The front of me is the source of a song Or to kiss with a fervor of love lifelong. My back is a plant fit for a queen, Crafted by needle, chemical, or machine.
Necklace
68.96 %
102 votes
logicsimplewho am Iclean

If will follow you for 1000 miles but not miss home. It desires neither food nor flowers. It fears not water, fire, knives, nor soldiers. But it disappears when the sun sets behind the western mountains. Who Am I?
Shadow.
68.94 %
131 votes
cleanpoemssimple

Pronounced as one letter, And written with three, Two letters there are, And two only in me. I’m double, I’m single, I’m black blue and gray, I’m read from both ends, And the same either way.
Eye.
68.90 %
138 votes
logicmathclever

Dean Sam and Castiel are three brothers. Interestingly their current age is prime. What's more interesting that difference between their ages is also prime. How old are they?
Sam : 2 Dean : 5 Castiel : 7 Age diff 7 - 2 = '5' is prime 7 - 5 = '2' is prime 5 - 2 = '3' is prime
68.87 %
109 votes
logiccleanclevermath

Your friend shows you two jars, one with 100 red marbles in it, the other with 100 blue marbles in it. He proposes a game. He'll put the two jars behind his back and tell you to pick one of them at random. You'll then close your eyes, he'll hand you the jar you picked, and you'll pick a random marble from that jar. You win if the marble you pick is blue, and you lose otherwise. To give you the best shot at winning, your friend gives you the two jars before the game starts and says you can move the marbles around however you'd like, as long as all 200 marbles are in the 2 jars (that is, you can't throw any marbles away). How should you move the marbles around to give yourself the best chance of picking a blue marble?
Put one blue marble in one jar, and put the rest of the marbles in the other jar. This will give you just about a 75% chance of picking a blue marble.
68.67 %
101 votes
cleanlogicsimple

Imagine John, a party magician, is carrying three pieces of gold each piece weighing one kilogram. While taking a walk he comes to a bridge which has a sign posted saying the bridge could hold only a maximum of 80 kilograms. John weighs 78 kilograms and the gold weighs three kilograms. John reads the sign and still safely crossed the bridge with all the gold. How did he manage this?
John is a juggler. When he came to the bridge he juggled the gold, always keeping one piece in the air.
68.66 %
79 votes
cleanwhat am Isimplelogic

Sometimes I am loved, usually by the young. Other times I am dreaded, mostly by the old ones. I am hard to remember, also hard to forget. And yet if you do, You'll make someone upset. I occur every day everyone has to face me. Even if you don't want it to happen; embrace me. What am I?
Birthday.
68.61 %
179 votes
logicsimpletricky

Romeo and Juliet are found dead on the floor in a bedroom. When they were discovered, there were pieces of glass and some water on the floor. The only furniture in the room is a shelf and a bed. The house is in a remote location, away from everything except for the nearby railroad track. What caused the death of Romeo and Juliet?
Romeo and Juliet are fishies. The rumble of the train knocked the tank off the shelf, it broke and Romeo and Julia did not survive.
68.54 %
75 votes
logicstorymath

You are standing in a house in the middle of the countryside. There is a small hole in one of the interior walls of the house, through which 100 identical wires are protruding. From this hole, the wires run underground all the way to a small shed exactly 1 mile away from the house, and are protruding from one of the shed's walls so that they are accessible from inside the shed. The ends of the wires coming out of the house wall each have a small tag on them, labeled with each number from 1 to 100 (so one of the wires is labeled "1", one is labeled "2", and so on, all the way through "100"). Your task is to label the ends of the wires protruding from the shed wall with the same number as the other end of the wire from the house (so, for example, the wire with its end labeled "47" in the house should have its other end in the shed labeled "47" as well). To help you label the ends of the wires in the shed, there are an unlimited supply of batteries in the house, and a single lightbulb in the shed. The way it works is that in the house, you can take any two wires and attach them to a single battery. If you then go to the shed and touch those two wires to the lightbulb, it will light up. The lightbulb will only light up if you touch it to two wires that are attached to the same battery. You can use as many of the batteries as you want, but you cannot attach any given wire to more than one battery at a time. Also, you cannot attach more than two wires to a given battery at one time. (Basically, each battery you use will have exactly two wires attached to it). Note that you don't have to attach all of the wires to batteries if you don't want to. Your goal, starting in the house, is to travel as little distance as possible in order to label all of the wires in the shed. You tell a few friends about the task at hand. "That will require you to travel 15 miles!" of of them exclaims. "Pish posh," yells another. "You'll only have to travel 5 miles!" "That's nonsense," a third replies. "You can do it in 3 miles!" Which of your friends is correct? And what strategy would you use to travel that number of miles to label all of the wires in the shed?
Believe it or not, you can do it travelling only 3 miles! The answer is rather elegant. Starting from the house, don't attach wires 1 and 2 to any batteries, but for the remaining wires, attach them in consecutive pairs to batteries (so attach wires 3 and 4 to the same battery, attach wires 5 and 6 to the same battery, and so on all the way through wires 99 and 100). Now travel 1 mile to the shed, and using the lightbulb, find all pairs of wires that light it up. Put a rubberband around each pair or wires that light up the lightbulb. The two wires that don't light up any lightbulbs are wires 1 and 2 (though you don't know yet which one of them is wire 1 and which is wire 2). Put a rubberband around this pair of wires as well, but mark it so you remember that they are wires 1 and 2. Now go 1 mile back to the house, and attach odd-numbered wires to batteries in the following pairs: (1 and 3), (5 and 7), (9 and 11), and so on, all the way through (97 and 99). Similarly, attach even-numbered wires to batteries in the following pairs: (4 and 6), (8 and 10), (12 and 14), and so on, all the way through (96 and 98). Note that in this round, we didn't attach wire 2 or wire 100 to any batteries. Finally, travel 1 mile back to the shed. You're now in a position to label all of the wires here. First, remember we know the pair of wires that are, collectively, wires 1 and 2. So test wires 1 and 2 with all the other wires to see what pair lights up the lightbulb. The wire from wires 1 and 2 that doesn't light up the bulb is wire 2 (which, remember, we didn't connect to a battery), and the other is wire 1, so we can label these as such. Furthermore, the wire that, with wire 1, lights up a lightbulb, is wire 3 (remember how we connected the wires this round). Now, the other wire in the rubber band with wire 3 is wire 4 (we know this from the first round), and the wire that, with wire 4, lights up the lightbulb, is wire 6 (again, because of how we connected the wires to batteries this round). We can continue labeling batteries this way (next we'll label wire 7, which is rubber-banded to wire 6, and then we'll label wire 9, which lights up the lightbulb with wire 7, and so on). At the end, we'll label wire 97, and then wire 99 (which lights up the lightbulb with wire 97), and finally wire 100 (which isn't connected to a battery this round, but is rubber-banded to wire 99). And we're done, having travelled only 3 miles!
68.54 %
75 votes