A farmer is travelling with a fox, a sheep and a small sack of hay. He comes to a river with a small boat in it. The boat can only support the farmer and one other animal/item. If the farmer leaves the fox alone with the sheep, the fox will eat the sheep. And if the farmer leaves the sheep alone with the hay, the sheep will eat the hay.
How can the farmer get all three as well as himself safely across the river?

The farmer takes the sheep across the river, then returns back.
The farmer takes the fox across the river.
The farmer takes the sheep back to the first side of the river.
The farmer leaves the sheep back on the first side of the river, and takes the hay to the other side.
The farmer returns to the first side of the river.
The farmer brings the sheep back to the second side.

There are several chickens and rabbits in a cage (with no other types of animals). There are 72 heads and 200 feet inside the cage. How many chickens are there, and how many rabbits?

There are 44 chickens and 28 rabbits in the cage.
Let c be the number of chickens, and r be the number of rabbits.
r + c = 72
4r + 2c = 200
To solve the equations, we multiply the first by two, then subtract the second.
2r + 2c = 144
2r = 56
r = 28
c = 44

A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
How can the swan succesfully escape?

Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference).
From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore.
The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed.
The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run:
[0.75R feet + 1 millimeter] * 4 < R*pi
[This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.]
Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.

August was the name of a puppy who was always picking on larger animals. One day he got into an argument with a lion. The next day was the first day of September. Why?