Riddle #903

logic

On the game show et´s Make a Deal, Monty Hall shows you three doors. Behind one of the doors is a new car, the other two hide goats. You choose one door, perhaps #1. Now Monty shows you what´s behind door #2 and it´s a goat.He gives you the chance to stay with original pick or select door #3. What do you do?
You should always abandon your original choice in favor of the remaining door (#3). When you make your first choice the chance of winning is 1 in 3 or 33%. When you switch doors, you turn a 2 in 3 chance of losing in the first round into a 2 in 3 chance of winning in the second round. Search: Monty Hall problem
72.32 %
86 votes

Similar riddles

See also best riddles or new riddles.

cleanlogicsimple

Two men are in a desert. They're both wearing backpacks. One of the men is dead. The man who is alive, has his pack open. The dead man's pack is closed. What is in their packs?
A parachute.
74.04 %
83 votes
logicmathclever

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck. Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this. How can you accomplish this seemingly impossible task?
Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started. This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.
72.26 %
90 votes
logicmathclever

You and a friend are standing in front of two houses. In each house lives a family with two children. "The family on the left has a boy who loves history, but their other child prefers math," your friend tells you. "The family on the right has a 7-year old boy, and they just had a new baby," he explains. "Does either family have a girl?" you ask. "I'm not sure," your friend says. "But pick the family that you think is more likely to have a girl. If they do have a girl, I'll give you $100." Which family should you pick, or does it not matter?
You should pick the house on the left. Specifically, there is a 2/3 chance that the family on the left has a girl, whereas there's only a 1/2 chance that the house on the right has a girl. This is a very counterintuitive riddle. It seems like there should always be a 1/2 chance that a given child is a girl. And in fact there is. The key word there is "given". Because we are not asking about a "given" child for the house on the left. We are asking about what could be either child. Whereas for the house on the right, we are asking about a "given" child...specifically, we're asking about the younger child. There are 3 possibilities for the children in the first house: Younger Older Girl Boy Boy Girl Boy Boy There is no "Girl, Girl" option because we know the house on the left has at least one boy. Since each of these 3 options is equally likely, and 2 of them have one girl, there is a 2/3 chance of there being a girl in the house on the left. For the house on the right, because we already know the older child is a boy, there are only two possibilities: Younger Older Girl Boy Boy Boy And as we can see, there is a 1/2 chance for the house on the right having a girl. Search for: Boy or Girl paradox
61.91 %
67 votes
logicstorymath

A man puts on a clean shirt every night before bed. On the first nigh he puts on a blue shirt. He than sleeps for 5 hours. Every one hour more he sleeps than the night before he put on a different color shirt the next night according to this scale: blue, black, red, green, white, pink, orange, brown, purple, yellow, grey, neon green, tan, and teal. Every one hour less he sleeps than the last night he put on a different color shirt the next night going backwards on his scale. If he were to wear a blue shirt because he slept more hours than the last night he does. If it was because he slept less hours than the night before he skips it and wears a teal shirt instead. If he goes backwards on the scale and goes to blue but would not wear a blue shirt he still counts blue in his going backwards on his scale. The second night the man wears a blue shirt because he did not sleep any more or less hours than the last night. The man sleeps for six hours that night. The next night he sleeps for five hours. Night number four he sleeps for eight hours. The next night he sleeps for seven hours. The next night he sleeps so well he sleeps for 11 hours. Night number seven he stays up so late he only sleeps for four hours. The next night he is so tired he sleeps for eight hours. The next night he sleeps for eight hours again. Night number ten he sleeps for 14 hours because he is sick. Since he slept so long the last night he only sleeps for seven hours. The next night he is a little bit tired so he sleeps for eight hours. The night after that he had to do so much work he only slept five hours. The next night at work they let him out early and he slept for nine hours. The next night he slept for eight hours. And the last night the man did he slept for ten hours. The next night he put on a different color shirt according to his scale, but the next night he randomly picked a shirt. At what night will the man wear a blue shirt again?
12th Night.
56.40 %
81 votes
cleanlogic

A boy was rushed to the hospital emergency room. The ER doctor saw the boy and said, "I cannot operate on this boy. He is my son." But the doctor was not the boy's father. How could that be?
The doctor was his mom.
66.85 %
290 votes
interviewlogicclever

You have 3 jars that are all mislabeled. One jar contains Apples, another contains Oranges and the third jar contains a mixture of both Apples and Oranges. You are allowed to pick as many fruits as you want from each jar to fix the labels on the jars. What is the minimum number of fruits that you have to pick and from which jars to correctly label them?
Let's take a scenario. Suppose you pick from jar labelled as Apples and Oranges and you got Apple from it. That means that jar should be Apples as it is incorrectly labelled. So it has to be Apples jar. Now the jar labelled Oranges has to be Mixed as it cannot be the Oranges jar as they are wrongly labelled and the jar labelled Apples has to be Oranges. Similar scenario applies if it's a Oranges taken out from the jar labelled as Apples and Oranges. So you need to pick just one fruit from the jar labelled as Apples and Oranges to correctly label the jars.
69.55 %
70 votes
cleanlogicsimple

A young peasant wanted to marry the king's daughter. The king didn't like the idea of his daughter marrying a peasant, but he wanted to appear fair in front of his subjects. The king said that he would put two pieces of paper into a hat, one reading "exile" and the other reading "marriage". Later that day, the peasant overheard the king saying that both pieces of paper would read "exile", thus ensuring that the peasant would be out of his way for good. The peasant remained undaunted and, as arranged, arrived at the king's court where a large crown gathered for the big event. The peasant then did something that assured him the hand of the king's daughter. What did he do?
The peasant picked one of the pieces of paper and tore it up. He then asked the kind to show him the other piece of paper which, of course, said EXILE. The king, not wishing to appear fraudulent in front of his subjects, granted that the piece of paper the peasant had picked must have said MARRIAGE.
75.08 %
124 votes