Riddle #878

logiccleverstory

A man lives on the 44th floor of his building. On rainy days, when he gets home from work, he takes the elevator all the way up to his floor. But on sunny days, he goes up to floor 20 and walks the rest of the way. Why does he do this?
The man is a midget and cannot reach button "44" in the elevator on sunny days. On rainy days he has his umbrella with him and is able to use it to press the button.
70.83 %
57 votes

Similar riddles

See also best riddles or new riddles.

cleanstoryclever

In classic mythology, there is the story of the Sphinx, a monster with the body of a lion and the upper part of a woman. The Sphinx lay crouched on the top of a rock along the highroad to the city of Thebes, and stopped all travellers passing by, proposing to them a riddle. Those who failed to answer the riddle correctly were killed. This is the riddle the Sphinx asked the travellers: "What animal walks on four legs in the morning, two legs during the day, and three legs in the evening?"
This is part of the story of Oedipus, who replied to the Sphinx, "Man, who in childhood creeps on hands and knees, in manhood walks erect, and in old age with the aid of a staff." Morning, day and night are representative of the stages of life. The Sphinx was so mortified at the solving of her riddle that she cast herself down from the rock and perished.
82.78 %
749 votes
storyclever

In a far away land, it was known that if you drank poison, the only way to save yourself is to drink a stronger poison, which neutralizes the weaker poison. The king that ruled the land wanted to make sure that he possessed the strongest poison in the kingdom, in order to ensure his survival, in any situation. So the king called the kingdom's pharmacist and the kingdom's treasurer, he gave each a week to make the strongest poison. Then, each would drink the other one's poison, then his own, and the one that will survive, will be the one that had the stronger poison. The pharmacist went straight to work, but the treasurer knew he had no chance, for the pharmacist was much more experienced in this field, so instead, he made up a plan to survive and make sure the pharmacist dies. On the last day the pharmacist suddenly realized that the treasurer would know he had no chance, so he must have a plan. After a little thought, the pharmacist realized what the treasurer's plan must be, and he concocted a counter plan, to make sure he survives and the treasurer dies. When the time came, the king summoned both of them. They drank the poisons as planned, and the treasurer died, the pharmacist survived, and the king didn't get what he wanted. What exactly happened there?
The treasurer's plan was to drink a weak poison prior to the meeting with the king, and then he would drink the pharmacist's strong poison, which would neutralize the weak poison. As his own poison he would bring water, which will have no effect on him, but the pharmacist who would drink the water, and then his poison would surely die. When the pharmacist figured out this plan, he decided to bring water as well. So the treasurer who drank poison earlier, drank the pharmacist's water, then his own water, and died of the poison he drank before. The pharmacist would drink only water, so nothing will happen to him. And because both of them brought the king water, he didn't get a strong poison like he wanted.
80.79 %
89 votes
logiccleverclean

Last week, the local Primary school was visited by the Government School Inspector who was there to check that teachers were performing well in their respective classes. He was very impressed with one particular teacher. The Inspector noticed that each time the class teacher asked a question, every child in the class put up their hands enthusiastically to answer it. More surprisingly, whilst the teacher chose a different child to answer the questions each time, the answers were always correct. Why would this be?
The children were instructed to ALL raise their hands whenever a question was asked. It did not matter whether they knew the answer or not. If they did not know the answer, however, they would raise their LEFT hand. If they knew the answer, they would raise their RIGHT hand. The class teacher would choose a different child each time, but always the ones who had their RIGHT hand raised.
80.14 %
122 votes
logiccleversimple

In olden days you are a clever thief charged with treason against the king and sentenced to death. But the king decides to be a little lenient and lets you choose your own way to die. What way should you choose? Remember, you're clever!
I would have chosen to die of "old age". Did you?
80.06 %
168 votes
logicsimpleclever

Pirate Pete had been captured by a Spanish general and sentenced to death by his 50-man firing squad. Pete cringed, as he knew their reputation for being the worst firing squad in the Spanish military. They were such bad shots that they would often all miss their targets and simply maim their victims, leaving them to bleed to death, as the general's tradition was to only allow one shot per man to save on ammunition. The thought of a slow painful death made Pete beg for mercy. "Very well, I have some compassion. You may choose where the men stand when they shoot you and I will add 50 extra men to the squad to ensure someone will at least hit you. Perhaps if they stand closer they will kill you quicker, if you're lucky," snickered the general. "Oh, and just so you don't get any funny ideas, they can't stand more than 20 ft away, they must be facing you, and you must remain tied to the post in the middle of the yard. And to show I'm not totally heartless, if you aren't dead by sundown I'll release you so you can die peacefully outside the compound. I must go now but will return tomorrow and see to it that you are buried in a nice spot, though with 100 men, I doubt there will be much left of you to bury." After giving his instructions the general left. Upon his return the next day, he found that Pete had been set free alive and well. "How could this be?" demanded the general. "It was where Pete had us stand," explained the captain of the squad. Where did Pete tell them to stand?
Pete told them to form a circle around him. All the squad was facing in at Pete, ready to shoot, when they realized that everyone who missed would likely end up shooting another squad member. So no one dared to fire, knowing the risk. Thus at sundown he was released.
79.71 %
84 votes
logicsimplecleanclever

Your friend pulls out a perfectly circular table and a sack of quarters, and proposes a game. "We'll take turns putting a quarter on the table," he says. "Each quarter must lay flat on the table, and cannot sit on top of any other quarters. The last person to successfully put a quarter on the table wins." He gives you the choice to go first or second. What should you do, and what should your strategy be to win?
You should go first, and put a quarter at the exact center of the table. Then, each time your opponent places a quarter down, you should place your next quarter in the symmetric position on the opposite side of the table. This will ensure that you always have a place to set down our quarter, and eventually your oppponent will run out of space.
79.50 %
89 votes
logicmathstorycleaninterview

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
79.48 %
65 votes
cleanlogicstory

100 men are in a room, each wearing either a white or black hat. Nobody knows the color of his own hat, although everyone can see everyone else's hat. The men are not allowed to communicate with each other at all (and thus nobody will ever be able to figure out the color of his own hat). The men need to line up against the wall such that all the men with black hats are next to each other, and all the men with white hats are next to each other. How can they do this without communicating? You can assume they came up with a shared strategy before coming into the room.
The men go to stand agains the wall one at a time. If a man goes to stand against the wall and all of the men already against the wall have the same color hat, then he just goes and stands at either end of the line. However, if a man goes to stand against the wall and there are men with both black and white hats already against the wall, he goes and stands between the two men with different colored hats. This will maintain the state that the line contains men with one colored hats on one side, and men with the other colored hats on the other side, and when the last man goes and stands against the wall, we'll still have the desired outcome.
79.46 %
71 votes