logicA man eats dinner, goes up to his bedroom, turns off the lights, and goes to sleep. In the morning, he wakes up and looks outside. Horrified at what he sees, he hurls himself out his window to his death.
Why does he do this?

The man was a lighthouse operator. He wasn't supposed to turn off his lights. When he wakes up in the morning, he sees a giant ship that has crashed into the land, causing much catastrophe. Unable to go on, he decides to take his own life.

## Similar riddles

See also best riddles or new riddles.

logicshortWhat is the significance of the following: The year is 1978, thirty-four minutes past noon on May 6th.

The time and month/date/year are 12:34, 5/6/78.

logicA monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain.
Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.

Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain).
Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.

logicmathYou can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square.
But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board.
Can you explain why tiling this board isn't possible?

Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square.
Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.

logicshortWhat happened when wheel was invented?

It caused a revolution.

logicThis teaser is based on a weird but true story from a few years ago. A complaint was received by the president of a major car company: "This is the fourth time I have written you, and I don't blame you for not answering me because I must sound crazy, but it is a fact that we have a tradition in our family of having ice cream for dessert after dinner each night. Every night after we've eaten, the family votes on which flavor of ice cream we should have and I drive down to the store to get it. I recently purchased a new Pantsmobile from your company and since then my trips to the store have created a problem. You see, every time I buy vanilla ice cream my car won't start. If I get any other kind of ice cream the car starts just fine. I want you to know I'm serious about this question, no matter how silly it sounds: 'What is there about a Pantsmobile that makes it not start when I get vanilla ice cream, and easy to start whenever I get any other kind?'" The Pantsmobile company President was understandably skeptical about the letter, but he sent an engineer to check it out anyway. He had arranged to meet the man just after dinner time, so the two hopped into the car and drove to the grocery store. The man bought vanilla ice cream that night and, sure enough, after they came back to the car it wouldn't start for several minutes. The engineer returned for three more nights. The first night, the man got chocolate. The car started right away. The second night, he got strawberry and again the car started right up. The third night he bought vanilla and the car failed to start. There was a logical reason why the man's car wouldn't start when he bought vanilla ice cream. What was it?
HINT: The man lived in an extremely hot city, and this took place during the summer. Also, the layout of the grocery store was such that it took the man less time to buy vanilla ice cream.

Vanilla ice cream was the most popular flavor and was on display in a little case near the express check out, while the other flavors were in the back of the store and took more time to select and check out. This mattered because the man's car was experiencing vapor lock, which is excess heat boiling the fuel in the fuel line and the resulting air bubbles blocking the flow of fuel until the car has enough time to cool.. When the car was running there was enough pressure to move the bubbles along, but not when the car was trying to start.

cleanlogicshortIf you drop me I'm sure to crack, but give me a smile and I'll always smile back.

Mirror.

cleanlogicmathshortHow do you make the number 7 an even number without addition, subtraction, multiplication, or division?

Drop the "S".

crazylogicYou are a bus driver. The bus starts out empty.
At the first stop 4 people get on.
At the second stop, 8 people get on and 3 get off.
At the third stop, 2 people get off and 4 get on.
The question is, what color are the bus driver's eyes?

Since the riddle starts out by saying you are the bus driver, the answer would be the color of your own eyes.

logicmathThree people check into a hotel room. The bill is $30 so they each pay $10. After they go to the room, the hotel's cashier realizes that the bill should have only been $25. So he gives $5 to the bellhop and tells him to return the money to the guests. The bellhop notices that $5 can't be split evenly between the three guests, so he keeps $2 for himself and then gives the other $3 to the guests.
Now the guests, with their dollars back, have each paid $9 for a total of $27. And the bellhop has pocketed $2. So there is $27 + $2 = $29 accounted for. But the guests originally paid $30. What happened to the other dollar?

This riddle is just an example of misdirection. It is actually nonsensical to add $27 + $2, because the $27 that has been paid includes the $2 the bellhop made.
The correct math is to say that the guests paid $27, and the bellhop took $2, which, if given back to the guests, would bring them to their correct payment of $27 - $2 = $25.

cleanlogicshortI live in every part of your body and all commodities are transacted through me! I appear the same, but different!

Cell, Sell.