Riddle #677

logicmathcleanclever

You are on a gameshow and the host shows you three doors. Behind one door is a suitcase with $1 million in it, and behind the other two doors are sacks of coal. The host tells you to choose a door, and that the prize behind that door will be yours to keep. You point to one of the three doors. The host says, "Before we open the door you pointed to, I am going to open one of the other doors." He points to one of the other doors, and it swings open, revealing a sack of coal behind it. "Now I will give you a choice," the host tells you. "You can either stick with the door you originally chose, or you can choose to switch to the other unopened door." Should you switch doors, stick with your original choice, or does it not matter?
You should switch doors. There are 3 possibilities for the first door you picked: You picked the first wrong door - so if you switch, you win You picked the other wrong door - again, if you switch, you win You picked the correct door - if you switch, you lose Each of these cases are equally likely. So if you switch, there is a 2/3 chance that you will win (because there is a 2/3 chance that you are in one of the first two cases listed above), and a 1/3 chance you'll lose. So switching is a good idea. Another way to look at this is to imagine that you're on a similar game show, except with 100 doors. 99 of those doors have coal behind them, 1 has the money. The host tells you to pick a door, and you point to one, knowing almost certainly that you did not pick the correct one (there's only a 1 in 100 chance). Then the host opens 98 other doors, leave only the door you picked and one other door closed. We know that the host was forced to leave the door with money behind it closed, so it is almost definitely the door we did not pick initially, and we would be wise to switch. Search: Monty Hall problem
76.26 %
66 votes

Similar riddles

See also best riddles or new riddles.

cleanstoryclever

In classic mythology, there is the story of the Sphinx, a monster with the body of a lion and the upper part of a woman. The Sphinx lay crouched on the top of a rock along the highroad to the city of Thebes, and stopped all travellers passing by, proposing to them a riddle. Those who failed to answer the riddle correctly were killed. This is the riddle the Sphinx asked the travellers: "What animal walks on four legs in the morning, two legs during the day, and three legs in the evening?"
This is part of the story of Oedipus, who replied to the Sphinx, "Man, who in childhood creeps on hands and knees, in manhood walks erect, and in old age with the aid of a staff." Morning, day and night are representative of the stages of life. The Sphinx was so mortified at the solving of her riddle that she cast herself down from the rock and perished.
84.56 %
683 votes
logicclever

Justin Case and Auntie Bellum are fellow con artists who deliver coded messages to each other to communicate. Recently Auntie Bellum was put in jail for stealing a rare and expensive diamond. Only a few days after this, Justin Case sent her a friendly letter asking her how she was. On the inside of the envelope of the letter, he hid a code. Yesterday, Auntie Bellum escaped and left the envelope and the letter inside the jail cell. The police did some research and found the code on the inside of the envelope, but they haven't been able to crack it. Could you help the police find out what the message is? This is the code: llwatchawtfeclocklnisksundialcirbetimersool
The message was "loose bricks in left wall." The message was put backward with words related to time in between. This is how the message looks when separated: ll watch awtfe clock Inisk sundial cirbe timer sool If you take out watch, clock, sundial, and timer, this is what is left: llawtfelniskcirbesool Look at this backwards and this is what you have: loose bricks in left wall Auntie Bellum took out the bricks and escaped in the night. Then, she put the bricks back where they were.
83.62 %
59 votes
cleanlogicsimpleclever

Two fathers and two sons went fishing one day. They were there the whole day and only caught 3 fish. One father said, that is enough for all of us, we will have one each. How can this be possible?
There was the father, his son, and his son's son. This equals 2 fathers and 2 sons for a total of 3!
82.79 %
71 votes
logicmath

There are 1 million closed school lockers in a row, labeled 1 through 1,000,000. You first go through and flip every locker open. Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed. You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through. Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000). At the end of this, is locker 1,000,000 open or closed?
Locker 1,000,000 will be open. If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open. As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors). So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.
82.65 %
63 votes
logicmathclever

You can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square. But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board. Can you explain why tiling this board isn't possible?
Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square. Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.
82.20 %
54 votes
logicmath

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?
833 apples. Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go. Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind). Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.
82.12 %
61 votes
interviewlogicmath

Three ants are sitting at the three corners of an equilateral triangle. Each ant starts randomly picks a direction and starts to move along the edge of the triangle. What is the probability that none of the ants collide?
So let’s think this through. The ants can only avoid a collision if they all decide to move in the same direction (either clockwise or anti-clockwise). If the ants do not pick the same direction, there will definitely be a collision. Each ant has the option to either move clockwise or anti-clockwise. There is a one in two chance that an ant decides to pick a particular direction. Using simple probability calculations, we can determine the probability of no collision. P(No collision) = P(All ants go in a clockwise direction) + P( All ants go in an anti-clockwise direction) = 0.5 * 0.5 * 0.5 + 0.5 * 0.5 * 0.5 = 0.25
82.02 %
46 votes
logicclean

There is a barrel with no lid and some wine in it. "This barrel of wine is more than half full," said Curly. Moe says, "No it's not. It's less than half full." Without any measuring implements and without removing any wine from the barrel, how can they easily determine who is correct?
Tilt the barrel until the wine barely touches the lip of the barrel. If the bottom of the barrel is visible then it is less than half full. If the barrel bottom is still completely covered by the wine, then it is more than half full.
81.89 %
53 votes