If,
Fernando + Alonso + McLaren = 6
Fernando x Alonso = 2
Alonso x McLaren = 6
Then,
McLaren x Fernando = ?

3 or 0.75
Explanation:
Rewriting the last 2 equations in terms of Alonso,
Fernando = 2/Alonso
McLaren = 6/Alonso
Replacing above values in equation "Fernando + Alonso + McLaren = 6"
2/Alonso + Alonso + 6/Alonso =6
(2 + Alonso^2 + 6)/Alonso = 6
8 + Alonso^2 = 6Alonso
Alonso^2 - 6Alonso + 8 = 0
(Alonso - 4) (Alonso - 2) = 0
Therefore;
Alonso = 4 or 2
Let's take value of Alonso as 2
Fernando = 2/2 = 1
McLaren = 6/2 = 3
Therefore;
McLaren x Fernando = 3 x 1 = 3
Let's take value of Alonso as 4
Fernando = 2/4 = 0.5
McLaren = 6/4 = 1.5
Therefore;
McLaren x Fernando = 1.5 x 0.5 = 0.75

How can you divide a pizza into 8 equal slices using only 3 straight cuts?

Cut 1: Cut the pizza straight down the middle into two halves.
Cut 2: Keeping the two halves in the place, cut the pizza straight down the middle at right angles to the first cut (you will be left with 4 equal quarters)
Cut 3: Pile the 4 quarters on top of each other and cut through the middle of the pile. You will be left with 8 equal slices.

There are 1 million closed school lockers in a row, labeled 1 through 1,000,000.
You first go through and flip every locker open.
Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed.
You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through.
Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000).
At the end of this, is locker 1,000,000 open or closed?

Locker 1,000,000 will be open.
If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open.
As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors).
So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.

You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?

833 apples.
Step one: First you want to make 3 trips of 1,000 apples 333 miles. You will be left with 2,001 apples and 667 miles to go.
Step two: Next you want to take 2 trips of 1,000 apples 500 miles. You will be left with 1,000 apples and 167 miles to go (you have to leave an apple behind).
Step three: Finally, you travel the last 167 miles with one load of 1,000 apples and are left with 833 apples in Bananaville.

Every day, Jack arrives at the train station from work at 5 pm. His wife leaves home in her car to meet him there at exactly 5 pm, and drives him home. One day, Jack gets to the station an hour early, and starts walking home, until his wife meets him on the road. They get home 30 minutes earlier than usual. How long was he walking? Distances are unspecified. Speeds are unspecified, but constant. Give a number which represents the answer in minutes.

The best way to think about this problem is to consider it from the perspective of the wife. Her round trip was decreased by 30 minutes, which means each leg of her trip was decreased by 15 minutes. Jack must have been walking for 45 minutes.

Two trains are traveling toward each other on the same track, each at 60 miles per hour. When they are exactly 120 miles apart, a fly takes off from the front of one of the trains, flying toward the other train at a constant rate of 100 miles per hour. When the fly reaches the other train, it instantly changes directions and starts flying toward the other train, still at 100 miles per hour. It keeps doing this back and forth until the trains finally collide.
If you add up all the distances back and forth that the fly has travelled, how much total distance has the fly travelled when the trains finally collide?

The fly has travelled exactly 100 miles. We can figure this out using some simple math. Becuase the trains are 120 miles apart when the fly takes off, and are travelling at 60 mph each, they will collide in exactly 1 hour. This gives the fly exactly 1 hour of flying time, going at a speed of 100 miles per hour. Thus, the fly will travel 100 miles in this hour.

143547
Explanations:
Multiplication of the 1st & 2nd numbers, 5*3 = 15; 9*2 = 18…thusly, 7*2 = 14
Multiplication of the 1st & 3rd numbers, 5*2 = 10; 9*4 = 36…thusly, 7*5 = 35;
Multiplication of the 1st & the sum of the 2nd & 3rd numbers. The generated result is reduced by the value of the 2nd number, …thusly, 7*(2+5) = 49 - 2 = 47

Create a number using only the digits 4,4,3,3,2,2,1 and 1.
So I can only be eight digits.
You have to make sure the ones are separated by one digit, the twos are separated by two digits the threes are separated with three digits and the fours are separated by four digits.

Count the number of times the letter "F" appears in the following paragraph:
FAY FRIED FIFTY POUNDS OF
SALTED FISH AND THREE POUNDS
OF DRY FENNEL FOR DINNER FOR
FORTY MEMBERS OF HER FATHER'S FAMILY.

It appears 14 times. Make sure to count the "F"s in the word "OF", which people commonly miss.

Consider the following explanation for why 1=2:
1. Start out Let y = x
2. Multiply through by x xy = x2
3. Subtract y2 from each side xy - y2 = x2 - y2
4. Factor each side y(x-y) = (x+y)(x-y)
5. Divide both sides by (x-y) y = x+y
6. Divide both sides by y y/y = x/y + y/y
7. And so... 1 = x/y + 1
8. Since x=y, x/y = 1 1 = 1 + 1
8. And so... 1 = 2
How is this possible?

Step 5 is invalid, because we are dividing by (x-y), and since x=y, we are thus dividing by 0. This is an invalid mathematical operation (division by 0), and so by not followinng basic mathematical rules, we are able to get strange results like these.