## Two different purposes

You have to look at me to say what I show you. I offer two different purposes but I am spelled the same and I am pronounced the same.

WATCH and WATCH (Watch the watch).

You have to look at me to say what I show you. I offer two different purposes but I am spelled the same and I am pronounced the same.

WATCH and WATCH (Watch the watch).

See also best riddles or new riddles.

You bury me when I am alive,
and dig me up when I die.
What am I?

A plant.

In classic mythology, there is the story of the Sphinx, a monster with the body of a lion and the upper part of a woman.
The Sphinx lay crouched on the top of a rock along the highroad to the city of Thebes, and stopped all travellers passing by, proposing to them a riddle.
Those who failed to answer the riddle correctly were killed.
This is the riddle the Sphinx asked the travellers: "What animal walks on four legs in the morning, two legs during the day, and three legs in the evening?"

This is part of the story of Oedipus, who replied to the Sphinx, "Man, who in childhood creeps on hands and knees, in manhood walks erect, and in old age with the aid of a staff."
Morning, day and night are representative of the stages of life.
The Sphinx was so mortified at the solving of her riddle that she cast herself down from the rock and perished.

Consider the following explanation for why 1=2:
1. Start out Let y = x
2. Multiply through by x xy = x2
3. Subtract y2 from each side xy - y2 = x2 - y2
4. Factor each side y(x-y) = (x+y)(x-y)
5. Divide both sides by (x-y) y = x+y
6. Divide both sides by y y/y = x/y + y/y
7. And so... 1 = x/y + 1
8. Since x=y, x/y = 1 1 = 1 + 1
8. And so... 1 = 2
How is this possible?

Step 5 is invalid, because we are dividing by (x-y), and since x=y, we are thus dividing by 0. This is an invalid mathematical operation (division by 0), and so by not followinng basic mathematical rules, we are able to get strange results like these.

It regulates our daily movements, but it feels no interest in our lives. It directs us when to come and go, but does not care if we pay attention. What is it?

A clock.

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck.
Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this.
How can you accomplish this seemingly impossible task?

Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started.
This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.

Justin Case and Auntie Bellum are fellow con artists who deliver coded messages to each other to communicate. Recently Auntie Bellum was put in jail for stealing a rare and expensive diamond. Only a few days after this, Justin Case sent her a friendly letter asking her how she was. On the inside of the envelope of the letter, he hid a code. Yesterday, Auntie Bellum escaped and left the envelope and the letter inside the jail cell. The police did some research and found the code on the inside of the envelope, but they haven't been able to crack it. Could you help the police find out what the message is?
This is the code:
llwatchawtfeclocklnisksundialcirbetimersool

The message was "loose bricks in left wall." The message was put backward with words related to time in between. This is how the message looks when separated:
ll watch awtfe clock Inisk sundial cirbe timer sool
If you take out watch, clock, sundial, and timer, this is what is left:
llawtfelniskcirbesool
Look at this backwards and this is what you have:
loose bricks in left wall
Auntie Bellum took out the bricks and escaped in the night. Then, she put the bricks back where they were.

You can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square.
But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board.
Can you explain why tiling this board isn't possible?

Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square.
Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.

There are 3 switches outside of a room, all in the 'off' setting. One of them controls a lightbulb inside the room, the other two do nothing.
You cannot see into the room, and once you open the door to the room, you cannot flip any of the switches any more.
Before going into the room, how would you flip the switches in order to be able to tell which switch controls the light bulb?

Flip the first switch and keep it flipped for five minutes. Then unflip it, and flip the second switch. Go into the room. If the lightbulb is off but warm, the first switch controls it. If the light is on, the second switch controls it. If the light is off and cool, the third switch controls it.

It is an insect, and the first part of its name is the name of another insect. What is it?

Beetle.

A seven letter word containing thousands of letters.

Mailbox.