Riddle #1115

logic

Spring ahead

What is seen in the middle of March and April that can't be seen at the beginning or end of either month?
The letter "R"
90.67 %
45 votes

Similar riddles

See also best riddles or new riddles.

logic

An iron horse with a flaxen tail

An iron horse with a flaxen tail. The faster the horse runs, the shorter his tail becomes. What is it?
A needle and thread.
90.67 %
45 votes

logic

Paying With Rings

A man comes to a small hotel where he wishes to stay for 7 nights. He reaches into his pockets and realizes that he has no money, and the only item he has to offer is a gold chain, which consists of 7 rings connected in a row (not in a loop). The hotel proprietor tells the man that it will cost 1 ring per night, which will add up to all 7 rings for the 7 nights. "Ok," the man says. "I'll give you all 7 rings right now to pre-pay for my stay." "No," the proprietor says. "I don't like to be in other people's debt, so I cannot accept all the rings up front." "Alright," the man responds. "I'll wait until after the seventh night, and then give you all of the rings." "No," the proprietor says again. "I don't like to ever be owed anything. You'll need to make sure you've paid me the exact correct amount after each night." The man thinks for a minute, and then says "I'll just cut each of my rings off of the chain, and then give you one each night." "I do not want cut rings," the proprietor says. "However, I'm willing to let you cut one of the rings if you must." The man thinks for a few minutes and then figures out a way to abide by the proprietor's rules and stay the 7 nights in the hotel. What is his plan?
The man cuts the ring that is third away from the end of the chain. This leaves him with 3 smaller chains of length 1, 2, and 4. Then, he gives rings to the proprietor as follows: After night 1, give the proprietor the single ring After night 2, take the single ring back and give the proprietor the 2-ring chain After night 3, give the proprietor the single ring, totalling 3 rings with the proprietor After night 4, take back the single ring and the 2-ring chain, and give the proprietor the 4-ring chain After night 5, give the proprietor the single ring, totalling 5 rings with the proprietor After night 6, take back the single ring and give the proprietor the 2-ring chain, totalling 6 rings with the proprietor After night 7, give the proprietor the single ring, totalling 7 rings with the proprietor
90.47 %
44 votes

logicmath

2 Player and N Coin – Strategy Puzzle

There are n coins in a line. (Assume n is even). Two players take turns to take a coin from one of the ends of the line until there are no more coins left. The player with the larger amount of money wins. Would you rather go first or second? Does it matter? Assume that you go first, describe an algorithm to compute the maximum amount of money you can win. Note that the strategy to pick maximum of two corners may not work. In the following example, first player looses the game when he/she uses strategy to pick maximum of two corners. Example 18 20 15 30 10 14 First Player picks 18, now row of coins is 20 15 30 10 14 Second player picks 20, now row of coins is 15 30 10 14 First Player picks 15, now row of coins is 30 10 14 Second player picks 30, now row of coins is 10 14 First Player picks 14, now row of coins is 10 Second player picks 10, game over. The total value collected by second player is more (20 + 30 + 10) compared to first player (18 + 15 + 14). So the second player wins.
Going first will guarantee that you will not lose. By following the strategy below, you will always win the game (or get a possible tie). (1) Count the sum of all coins that are odd-numbered. (Call this X) (2) Count the sum of all coins that are even-numbered. (Call this Y) (3) If X > Y, take the left-most coin first. Choose all odd-numbered coins in subsequent moves. (4) If X < Y, take the right-most coin first. Choose all even-numbered coins in subsequent moves. (5) If X == Y, you will guarantee to get a tie if you stick with taking only even-numbered/odd-numbered coins. You might be wondering how you can always choose odd-numbered/even-numbered coins. Let me illustrate this using an example where you have 6 coins: Example 18 20 15 30 10 14 Sum of odd coins = 18 + 15 + 10 = 43 Sum of even coins = 20 + 30 + 14 = 64. Since the sum of even coins is more, the first player decides to collect all even coins. He first picks 14, now the other player can only pick a coin (10 or 18). Whichever is picked the other player, the first player again gets an opportunity to pick an even coin and block all even coins.
90.04 %
42 votes

funnylogic

A parrot

A petshop owner had a parrot with a sign on its cage that said "Parrot repeats everything it hears". Davey bought the parrot and for two weeks he spoke to it and it didn't say a word. He returned the parrot but the shopkeeper said he never lied about the parrot. How can this be?
The parrot was deaf.
85.94 %
50 votes

cleanlogicshort

Longer line

You draw a line. Without touching it, how do you make the line longer?
You draw a shorter line next to it, and it becomes the longer line.
81.55 %
59 votes

logicmath

A grandfather's clock

A grandfather's clock chimes the appropriate number of times to indicate the hour, as well as chiming once at each quarter hour. If you were in another room and hear the clock chime just once, what would be the longest period of time you would have to wait in order to be certain of the correct time?
You would have to wait 90 minutes between 12:15 and 1:45. Once you had heard seven single chimes, you would know that the next chime would be two chimes for 2 o'clock.
90.47 %
44 votes

logic

The wise man and the dove

A wise man lived on a hill above a small town. The townspeople often approached him to solve their difficult problems and riddles. One day, two lads decided to fool him. They took a dove and set off up the hill. Standing before him, one of the lads said "Tell me, wise man, is the dove I hold behind my back dead or alive?" The man smiled and said "I cannot answer your question correctly". Even though the wise man knew the condition of the dove, why wouldn't he state whether it was dead or alive?
The man told the two lads, "If I say the dove is alive, you will the bird and show me that it is dead. If I say that it is dead, you will release the dove and it will fly away. So you see I cannot answer your question.
91.22 %
48 votes

logicmystery

The greatest mystery ever

Paul is 20 years old in 1980, but only 15 years old in 1985. How is this possible?
The years are in B.C., not A.D. as you probably assumed. Based on the system we use to number the years, the years counted down in B.C. (but they weren't counting backwards back then).
64.81 %
86 votes