cleanlogicmathA 400 yard long train, travelling at 30 mph, enters a 4.5 mile long tunnel.
How long will elapse between the moment the front of the train enters the tunnel and the moment the end of the train clears the tunnel?

9 minutes and 27.2727 seconds.

## Similar riddles

See also best riddles or new riddles.

cleanlogicshortA hundred feet in the air, but it's back is on the ground. What is it?

A Centipede that turned upside down.

cleanlogicFind words to fit the clues, all the words end in the same three letters.
_ _ _ _ _ _ Eat quickly
_ _ _ _ _ _ Unverified story
_ _ _ _ _ _ _ An outline

Devour, rumour and contour.

cleanlogicYou measure my life in hours and I serve you by expiring. I'm quick when I'm thin and slow when I'm fat. The wind is my enemy.

A candle.

interviewlogicmathThe Miller next took the company aside and showed them nine sacks of flour that were standing as depicted in the sketch.
"Now, hearken, all and some," said he, "while that I do set ye the riddle of the nine sacks of flour.
And mark ye, my lords and masters, that there be single sacks on the outside, pairs next unto them, and three together in the middle thereof.
By Saint Benedict, it doth so happen that if we do but multiply the pair, 28, by the single one, 7, the answer is 196, which is of a truth the number shown by the sacks in the middle.
Yet it be not true that the other pair, 34, when so multiplied by its neighbour, 5, will also make 196.
Wherefore I do beg you, gentle sirs, so to place anew the nine sacks with as little trouble as possible that each pair when thus multiplied by its single neighbour shall make the number in the middle."
As the Miller has stipulated in effect that as few bags as possible shall be moved, there is only one answer to this puzzle, which everybody should be able to solve.

The way to arrange the sacks of flour is as follows: 2, 78, 156, 39, 4. Here each pair when multiplied by its single neighbour makes the number in the middle, and only five of the sacks need be moved.
There are just three other ways in which they might have been arranged (4, 39, 156, 78, 2; or 3, 58, 174, 29, 6; or 6, 29, 174, 58, 3), but they all require the moving of seven sacks.

cleanlogicYou are in a cabin and it is pitch black. You have one match on you. Which do you light first, the newspaper, the lamp, the candle, or the fire?

You light the match first!

logicmathOn the first day they cover one quarter of the total distance.
The next day they cover one quarter of what is left.
The following day they cover two fifths of the remainder and on the fourth day half of the remaining distance.
The group now have 14 miles left, how many miles have they walked?

68.962962 miles

cleanlogicwhat am IWhat word in the English language does the following: the first two letters signify a male, the first three letters signify a female, the first four letters signify a great, while the entire world signifies a great woman. What is the word?

Heroine

logicmathYou are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck.
Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this.
How can you accomplish this seemingly impossible task?

Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started.
This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.

cleanlogic100 men are in a room, each wearing either a white or black hat. Nobody knows the color of his own hat, although everyone can see everyone else's hat. The men are not allowed to communicate with each other at all (and thus nobody will ever be able to figure out the color of his own hat).
The men need to line up against the wall such that all the men with black hats are next to each other, and all the men with white hats are next to each other. How can they do this without communicating? You can assume they came up with a shared strategy before coming into the room.

The men go to stand agains the wall one at a time. If a man goes to stand against the wall and all of the men already against the wall have the same color hat, then he just goes and stands at either end of the line. However, if a man goes to stand against the wall and there are men with both black and white hats already against the wall, he goes and stands between the two men with different colored hats. This will maintain the state that the line contains men with one colored hats on one side, and men with the other colored hats on the other side, and when the last man goes and stands against the wall, we'll still have the desired outcome.

logicmathThere are 1 million closed school lockers in a row, labeled 1 through 1,000,000.
You first go through and flip every locker open.
Then you go through and flip every other locker (locker 2, 4, 6, etc...). When you're done, all the even-numbered lockers are closed.
You then go through and flip every third locker (3, 6, 9, etc...). "Flipping" mean you open it if it's closed, and close it if it's open. For example, as you go through this time, you close locker 3 (because it was still open after the previous run through), but you open locker 6, since you had closed it in the previous run through.
Then you go through and flip every fourth locker (4, 8, 12, etc...), then every fifth locker (5, 10, 15, etc...), then every sixth locker (6, 12, 18, etc...) and so on. At the end, you're going through and flipping every 999,998th locker (which is just locker 999,998), then every 999,999th locker (which is just locker 999,999), and finally, every 1,000,000th locker (which is just locker 1,000,000).
At the end of this, is locker 1,000,000 open or closed?

Locker 1,000,000 will be open.
If you think about it, the number of times that each locker is flipped is equal to the number of factors it has. For example, locker 12 has factors 1, 2, 3, 4, 6, and 12, and will thus be flipped 6 times (it will end be flipped when you flip every one, every 2nd, every 3rd, every 4th, every 6th, and every 12th locker). It will end up closed, since flipping an even number of times will return it to its starting position. You can see that if a locker number has an even number of factors, it will end up closed. If it has an odd number of factors, it will end up open.
As it turns out, the only types of numbers that have an odd number of factors are squares. This is because factors come in pairs, and for squares, one of those pairs is the square root, which is duplicated and thus doesn't count twice as a factor. For example, 12's factors are 1 x 12, 2 x 6, and 3 x 4 (6 total factors). On the other hand, 16's factors are 1 x 16, 2 x 8, and 4 x 4 (5 total factors).
So lockers 1, 4, 9, 16, 25, etc... will all be open. Since 1,000,000 is a square number (1000 x 1000), it will be open as well.