Best long riddles

logicpoemstricky

As I was going to St. Ives I met a man with seven wives The seven wives had seven sacks The seven sacks had seven cats The seven cats had seven kits Kits, cats, sacks and wives How many were going to St. Ives?
One person is going to St. Ives (the narrator). Because the narrator "met" all of the others mentioned in the poem, this implies that they walked past each other in opposite directions, and thus none of the wives, sacks, cats, or kits was actually headed to St. Ives. If you (like many) think this answer is a bit silly, you can assume that all the people, sacks, and animals mentioned were heading for St. Ives. In this case, we would have 1 narrator + 1 man + 7 wives + 49 sacks + 343 cats + 2401 kits = 2802 total going to St. Ives. However, this isn't the traditional answer.
75.16 %
87 votes
logicsimplewho am Iclean

If will follow you for 1000 miles but not miss home. It desires neither food nor flowers. It fears not water, fire, knives, nor soldiers. But it disappears when the sun sets behind the western mountains. Who Am I?
Shadow.
75.09 %
82 votes
logiccleansimple

You're walking down a path and come to two doors. One of the doors leads to a life of prosperity and happiness, and the other door leads to a life of misery and sorrow. You don't know which door is which. In front of the door is ONE man. You know that this man either always lies, or always tells the truth, but you don't know which. The man knows which door is which. You are allowed to ask the man ONE yes-or-no question to figure out which door to go through. To make things more difficult, the man is very self-centered, so you are only allowed to ask him a question about what he thinks or knows; your question cannot involve what any other person or object (real or hypothetical) might say. What question should you ask to ensure you go through the good door?
You should ask: "If I asked you if the good door is on the left, would you say yes?" Notice that this is subtly different than asking "Is the good door on the left?", in that you are asking him IF he would say yes to that question, not what his answer to the question would be. Thus you are asking a question about a question, and if it ends up being the liar you are talking to, this will cause him to lie about a lie and thus tell the truth. The four possible cases are: The man is a truth-teller and the good door is on the left. He will say "yes". The man is a truth-teller and the good door is on the right. He will say "no". The man is a liar and the good door is on the left. He will say "yes" because if you asked him "Is the good door on the left?", he would lie and say "no", and so when you ask him if he would say "yes", he will lie and say "yes". The man is a liar and the good door is on the right. Similar to the previous example, he'll say "no". So regardless of whether the man is a truth-teller or a liar, this question will get a "yes" if the door on the left is the good door, and a "no" if it's not.
75.05 %
96 votes
logic

On the game show et´s Make a Deal, Monty Hall shows you three doors. Behind one of the doors is a new car, the other two hide goats. You choose one door, perhaps #1. Now Monty shows you what´s behind door #2 and it´s a goat.He gives you the chance to stay with original pick or select door #3. What do you do?
You should always abandon your original choice in favor of the remaining door (#3). When you make your first choice the chance of winning is 1 in 3 or 33%. When you switch doors, you turn a 2 in 3 chance of losing in the first round into a 2 in 3 chance of winning in the second round. Search: Monty Hall problem
75.03 %
77 votes
logicmathclean

What is the least number of people that need to be in a room such that there is greater than a 50% chance that at least two of the people have the same birthday?
Only 23 people need to be in the room. Our first observation in solving this problem is the following: (the probability that at least 2 people have the same birthday + the probability that nobody has the same birthday) = 1.0 What this means is that there is a 100% chance that EITHER everybody in the room has a different birthday, OR at least two people in the room have the same birthday (and these probabilities don't add up to more than 1.0 because they cover mutually exclusive situations). With some simple re-arranging of the formula, we get: the probability that at least 2 people have the same birthday = (1.0 - the probability that nobody has the same birthday) So now if we can find the probability that nobody in the room has the same birthday, we just subtract this value from 1.0 and we'll have our answer. The probability that nobody in the room has the same birthday is fairly straightforward to calculate. We can think of this as a "selection without replacement" problem, where each person "selects" a birthday at random, and we then have to figure out the probability that no two people select the same birthday. The first selection has a 365/365 chance of being different than the other birthdays (since none have been selected yet). The next selection has a 364/365 chance of being different than the 1 birthday that has been selected so far. The next selection has a 363/365 chance of being different than the 2 birthdays that have been selected so far. These probabilities are multiplied together since each is conditional on the previous. So for example, the probability that nobody in a room of 3 people have the same birthday is (365/365 * 364/365 * 363/365) =~ 0.9918 More generally, if there are n people in a room, then the probability that nobody has the same birthday is (365/365 * 364/365 * ... * (365-n+2)/365 * (365-n+1)/365) We can plug in values for n. For n=22, we get that the probability that nobody has the same birthday is 0.524, and thus the probabilty that at least two people have the same birthday is (1.0 - 0.524) = 0.476 = 47.6%. Then for n=23, we get that the probability that nobody has the same birthday is 0.493, and thus the probabilty that at least two people have the same birthday is 1.0 - 0.493) = 0.507 = 50.7%. Thus, once we get to 23 people we have reached the 50% threshold.
75.00 %
119 votes
logicmathcleanclever

You are on a gameshow and the host shows you three doors. Behind one door is a suitcase with $1 million in it, and behind the other two doors are sacks of coal. The host tells you to choose a door, and that the prize behind that door will be yours to keep. You point to one of the three doors. The host says, "Before we open the door you pointed to, I am going to open one of the other doors." He points to one of the other doors, and it swings open, revealing a sack of coal behind it. "Now I will give you a choice," the host tells you. "You can either stick with the door you originally chose, or you can choose to switch to the other unopened door." Should you switch doors, stick with your original choice, or does it not matter?
You should switch doors. There are 3 possibilities for the first door you picked: You picked the first wrong door - so if you switch, you win You picked the other wrong door - again, if you switch, you win You picked the correct door - if you switch, you lose Each of these cases are equally likely. So if you switch, there is a 2/3 chance that you will win (because there is a 2/3 chance that you are in one of the first two cases listed above), and a 1/3 chance you'll lose. So switching is a good idea. Another way to look at this is to imagine that you're on a similar game show, except with 100 doors. 99 of those doors have coal behind them, 1 has the money. The host tells you to pick a door, and you point to one, knowing almost certainly that you did not pick the correct one (there's only a 1 in 100 chance). Then the host opens 98 other doors, leave only the door you picked and one other door closed. We know that the host was forced to leave the door with money behind it closed, so it is almost definitely the door we did not pick initially, and we would be wise to switch. Search: Monty Hall problem
74.96 %
72 votes
funnycrazy

One day a boss said to her employees, "I can fight and beat any man who works here." A new employee, a seven-foot-tall ex-prize fighter, stood up to take on the boss. The boss kept her word, but did not beat the man or back down. What did the boss do?
She fired the new employee on the spot.
74.96 %
72 votes
logicsimpletricky

Romeo and Juliet are found dead on the floor in a bedroom. When they were discovered, there were pieces of glass and some water on the floor. The only furniture in the room is a shelf and a bed. The house is in a remote location, away from everything except for the nearby railroad track. What caused the death of Romeo and Juliet?
Romeo and Juliet are fishies. The rumble of the train knocked the tank off the shelf, it broke and Romeo and Julia did not survive.
74.83 %
62 votes
logiccleanclevermathstory

A man told his son that he would give him $1000 if he could accomplish the following task. The father gave his son ten envelopes and a thousand dollars, all in one dollar bills. He told his son, "Place the money in the envelopes in such a manner that no matter what number of dollars I ask for, you can give me one or more of the envelopes, containing the exact amount I asked for without having to open any of the envelopes. If you can do this, you will keep the $1000." When the father asked for a sum of money, the son was able to give him envelopes containing the exact amount of money asked for. How did the son distribute the money among the ten envelopes?
The contents or the ten envelopes (in dollar bills) hould be as follows: $1, 2, 4, 8, 16, 32, 64, 128, 256, 489. The first nine numbers are in geometrical progression, and their sum, deducted from 1,000, gives the contents of the tenth envelope.
74.83 %
62 votes
cleanwhat am Ipoems

It can't be seen, can't be felt, can't be heard and can't be smelt. It lies behind stars and under hills, and empty holes it fills. It comes first and follows after, ends life and kills laughter. What is it?
The Dark.
74.81 %
81 votes