## Body part

What body part is pronounced as one letter but written with three, only two different letters are used?

Eye.

What body part is pronounced as one letter but written with three, only two different letters are used?

Eye.

In a far away land, it was known that if you drank poison, the only way to save yourself is to drink a stronger poison, which neutralizes the weaker poison.
The king that ruled the land wanted to make sure that he possessed the strongest poison in the kingdom, in order to ensure his survival, in any situation. So the king called the kingdom's pharmacist and the kingdom's treasurer, he gave each a week to make the strongest poison. Then, each would drink the other one's poison, then his own, and the one that will survive, will be the one that had the stronger poison. The pharmacist went straight to work, but the treasurer knew he had no chance, for the pharmacist was much more experienced in this field, so instead, he made up a plan to survive and make sure the pharmacist dies.
On the last day the pharmacist suddenly realized that the treasurer would know he had no chance, so he must have a plan. After a little thought, the pharmacist realized what the treasurer's plan must be, and he concocted a counter plan, to make sure he survives and the treasurer dies. When the time came, the king summoned both of them. They drank the poisons as planned, and the treasurer died, the pharmacist survived, and the king didn't get what he wanted. What exactly happened there?

The treasurer's plan was to drink a weak poison prior to the meeting with the king, and then he would drink the pharmacist's strong poison, which would neutralize the weak poison. As his own poison he would bring water, which will have no effect on him, but the pharmacist who would drink the water, and then his poison would surely die. When the pharmacist figured out this plan, he decided to bring water as well. So the treasurer who drank poison earlier, drank the pharmacist's water, then his own water, and died of the poison he drank before. The pharmacist would drink only water, so nothing will happen to him. And because both of them brought the king water, he didn't get a strong poison like he wanted.

You are killed in a plane crash and find yourself in front of 2 doors: one leads to heaven and one will lead you to hell for eternity. There is an identical troll at each door. You find instructions posted on the wall behind you. You can ask only one question and you can only direct it to only one of the trolls. One troll will always lie to you - regardless of your question - and the other will always tell you the truth. And only the trolls themselves know which one will lie and which one will be truthful. That is all that you are told.... What is the one and only question that will ensure you passage to heaven, and why?

Ask any of the tolls this question. "If I were to ask the other troll which is the door to Heaven, which door would he point to?" Now when the troll answers by pointing to one of the doors you simply take the other door.

Your friend pulls out a perfectly circular table and a sack of quarters, and proposes a game.
"We'll take turns putting a quarter on the table," he says. "Each quarter must lay flat on the table, and cannot sit on top of any other quarters. The last person to successfully put a quarter on the table wins."
He gives you the choice to go first or second. What should you do, and what should your strategy be to win?

You should go first, and put a quarter at the exact center of the table.
Then, each time your opponent places a quarter down, you should place your next quarter in the symmetric position on the opposite side of the table.
This will ensure that you always have a place to set down our quarter, and eventually your oppponent will run out of space.

In olden days you are a clever thief charged with treason against the king and sentenced to death.
But the king decides to be a little lenient and lets you choose your own way to die.
What way should you choose?
Remember, you're clever!

I would have chosen to die of "old age". Did you?

When Manish was three years old he carved a nail into his favorite tree to mark his height. Six years later at age nine, Manish returned to see how much higher the nail was. If the tree grew by five centimeters each year, how much higher would the nail be.

The nail would be at the same height since trees grow at their tops.

Last week, the local Primary school was visited by the Government School Inspector who was there to check that teachers were performing well in their respective classes. He was very impressed with one particular teacher. The Inspector noticed that each time the class teacher asked a question, every child in the class put up their hands enthusiastically to answer it. More surprisingly, whilst the teacher chose a different child to answer the questions each time, the answers were always correct.
Why would this be?

The children were instructed to ALL raise their hands whenever a question was asked. It did not matter whether they knew the answer or not. If they did not know the answer, however, they would raise their LEFT hand. If they knew the answer, they would raise their RIGHT hand. The class teacher would choose a different child each time, but always the ones who had their RIGHT hand raised.

You have just purchased a small company called Company X. Company X has N employees, and everyone is either an engineer or a manager. You know for sure that there are more engineers than managers at the company.
Everyone at Company X knows everyone else's position, and you are able to ask any employee about the position of any other employee. For example, you could approach employee A and ask "Is employee B an engineer or a manager?" You can only direct your question to one employee at a time, and can only ask about one other employee at a time. You're allowed to ask the same employee multiple questions if you want.
Your goal is to find at least one engineer to solve a huge problem that has just hit the company's factory. The problem is so urgent that you only have time to ask N-1 total questions.
The major problem with questioning the employees, however, is that while the engineers will always tell you the truth about other employees' roles, the managers may lie to you if they like. You can assume that the managers will do their best to confuse you.
How can you find at least one engineer by asking at most N-1 questions?

You can find at least one engineer using the following process:
Put all of the employees in a conference room. If there happen to be an even number of employees, pick one at random and send him home for the day so that we start with an odd number of employees. Note that there will still be more engineers than managers after we send this employee home.
Then call them out one at a time in any order. You will be forming them into a line as follows:
If there is nobody currently in the line, put the employee you just called out in the line.
Otherwise, if there is anybody in the line, then we do the following. Let's call the employee currently at the front of the line Employee_Front, and call the employee who we just called out of the conference room Employee_Next.
So ask Employee_Front if Employee_Next is a manager or an engineer.
If Employee_Front says "manager", then send both Employee_Front and Employee_Next home for the day.
However, if Employee_Front says "engineer", then put Employee_Next at the front of the line.
Keep doing this until you've called everyone out of the conference room. Notice that at this point, you'll have asked N-1 or less questions (you asked at most one question each time you called an employee out except for the first employee, when you didn't ask a question, so that's at most N-1 questions).
When you're done calling everyone out of the conference room, the person at the front of the line is an engineer. So you've found your engineer!
But the real question: how does this work?
We can prove this works by showing a few things.
First, let's show that if there are any engineers in the line, then they must be in front of any managers.
We'll show this with a proof by contradiction. Assume that there is a manager in front of an engineer somewhere in the line. Then it must have been the case that at some point, that engineer was Employee_Front and that manager was Employee_Next. But then Employee_Front would have said "manager" (since he is an engineer and always tells the truth), and we would have sent them both home. This contradicts their being in the line at all, and thus we know that there can never be a manager in front of an engineer in the line.
So now we know that after the process is done, if there are any engineers in the line, then they will be at the front of the line. That means that all we have to prove now is that there will be at least one engineer in the line at the end of the process, and we'll know that there will be an engineer at the front.
So let's show that there will be at least one engineer in the line. To see why, consider what happens when we ask Employee_Front about Employee_Next, and Employee_Front says "manager". We know for sure that in this case, Employee_Front and Employee_Next are not both engineers, because if this were the case, then Employee_Front would have definitely says "engineer". Put another way, at least one of Employee_Front and Employee_Next is a manager. So by sending them both home, we know we are sending home at least one manager, and thus, we are keeping the balance in the remaining employees that there are more engineers than managers.
Thus, once the process is over, there will be more engineers than managers in the line (this is also sufficient to show that there will be at least one person in the line once the process is over). And so, there must be at least one engineer in the line.
Put altogether, we proved that at the end of the process, there will be at least one engineer in the line and that any engineers in the line must be in front of any managers, and so we know that the person at the front of the line will be an engineer.

There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute.
The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge.
From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.

The longest amount of time that could pass would be 1 minute.
If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other.
In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions.
So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.

You can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square.
But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board.
Can you explain why tiling this board isn't possible?

Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square.
Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.