Story riddles

logiccleanstory

One day a really rich old man with two sons died. In his will he said that he would give one of his sons all of his fortune. He gave each of his sons a horse and said they would compete in a horse race from Los Angeles to Sacramento, but the son whose horse came in second would get the money. So one day they started the race. After one whole day they had only ridden one mile. At night they decided they should stop at a hotel. While they were booking in they told their problem to the wise old clerk, who made a suggestion. The next day the two brothers rode as fast as they could. What did the clerk suggest that they do?
The clerk told them to swap horses. The father said that whoever's horse crossed the finish line second would get the money. He didn't say that the owner of the horse had to be on it.
74.96 %
72 votes
logictrickysimplestory

A duke was hunting in the forest with his men-at-arms and servants when he came across a tree. Upon it, archery targets were painted and smack in the middle of each was an arrow. "Who is this incredibly fine archer?" cried the duke. "I must find him!" After continuing through the forest for a few miles he came across a small boy carrying a bow and arrow. Eventually the boy admitted that it was he who shot the arrows plumb in the center of all the targets. "You didn't just walk up to the targets and hammer the arrows into the middle, did you?" asked the duke worriedly. "No my lord. I shot them from a hundred paces. I swear it by all that I hold holy." "That is truly astonishing," said the duke. "I hereby admit you into my service." The boy thanked him profusely. "But I must ask one favor in return," the duke continued. "You must tell me how you came to be such an outstanding shot." How'd he get to be such a good shot?
The boy shot the arrow, then painted the circle around it.
74.92 %
114 votes
trickylogicstory

Two men working at a construction site were up for a challenge, and they were pretty mad at each other. Finally, at lunch break, they confronted one another. One man, obviously stronger, said "See that wheelbarrow? I'm willin' to bet $100 (that's all I have in my wallet here) that you can't wheel something to that cone and back that I can't do twice as far. Do you have a bet?" The other man, too dignified to decline, shook his hand, but he had a plan formulating. He looked at the objects lying around: a pile of 400 bricks, a steel beam, the 10 men that had gathered around to watch, his pickup truck, a stack of ten bags of concrete mix, and then he finalized his plan. "All right," he said, and revealed his object. That night, the strong man went home thoroughly teased and $100 poorer. What did the other man choose?
He looked the man right in the eye and said "get in."
74.71 %
113 votes
logicmathstory

The owner of a banana plantation has a camel. He wants to transport his 3000 bananas to the market, which is located after the desert. The distance between his banana plantation and the market is about 1000 kilometer. So he decided to take his camel to carry the bananas. The camel can carry at the maximum of 1000 bananas at a time, and it eats one banana for every kilometer it travels. What is the most bananas you can bring over to your destination?
First of all, the brute-force approach does not work. If the Camel starts by picking up the 1000 bananas and try to reach point B, then he will eat up all the 1000 bananas on the way and there will be no bananas left for him to return to point A. So we have to take an approach that the Camel drops the bananas in between and then returns to point A to pick up bananas again. Since there are 3000 bananas and the Camel can only carry 1000 bananas, he will have to make 3 trips to carry them all to any point in between. When bananas are reduced to 2000 then the Camel can shift them to another point in 2 trips and when the number of bananas left are <= 1000, then he should not return and only move forward. In the first part, P1, to shift the bananas by 1Km, the Camel will have to Move forward with 1000 bananas – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up 1 banana in the way back Will carry the last 1000 bananas from point a and move forward – will eat up 1 banana Note: After point 5 the Camel does not need to return to point A again. So to shift 3000 bananas by 1km, the Camel will eat up 5 bananas. After moving to 200 km the Camel would have eaten up 1000 bananas and is now left with 2000 bananas. Now in the Part P2, the Camel needs to do the following to shift the Bananas by 1km. Move forward with 1000 bananas – Will eat up 1 banana in the way forward Leave 998 banana after 1 km and return with 1 banana – will eat up this 1 banana in the way back Pick up the next 1000 bananas and move forward – Will eat up 1 banana in the way forward Note: After point 3 the Camel does not need to return to the starting point of P2. So to shift 2000 bananas by 1km, the Camel will eat up 3 bananas. After moving to 333 km the camel would have eaten up 1000 bananas and is now left with the last 1000 bananas. The Camel will actually be able to cover 333.33 km, I have ignored the decimal part because it will not make a difference in this example. Hence the length of part P2 is 333 Km. Now, for the last part, P3, the Camel only has to move forward. He has already covered 533 (200+333) out of 1000 km in Parts P1 & P2. Now he has to cover only 467 km and he has 1000 bananas. He will eat up 467 bananas on the way forward, and at point B the Camel will be left with only 533 Bananas.
74.71 %
90 votes
logicstorytricky

Frank and some of the boys were exchanging old war stories. James offered one about how his grandfather (Captain Smith) led a battalion against a German division during World War I. Through brilliant maneuvers he defeated them and captured valuable territory. Within a few months after the battle he was presented with a sword bearing the inscription: "To Captain Smith for Bravery, Daring and Leadership, World War One, from the Men of Battalion 8." Frank looked at James and said, "You really don't expect anyone to believe that yarn, do you?" What is wrong with the story?
It wasn't called World War One until much later. It was called the Great War at first, because they did not know during that war and immediately afterward that there would be a second World War (WW II).
74.71 %
90 votes
logiccleancleverstory

Once upon a time, in the West Lake village, a servant lived with his master. After service of about 30 years, his master became ill and was going to die. One day, the master called his servant and asked him for a wish. It could be any wish but just one. The master gave him one day to think about it. The servant became very happy and went to his mother for discussion about the wish. His mother was blind and she asked her son for making a wish for her eye-sight to come back. Then the servant went to his wife. She became very excited and asked for a son as they were childless for many years. After that, the servant went to his father who wanted to be rich and so he asked his son to wish for a lot of money. The next day he went to his master and made one wish through which all the three (mother, father, wife) got what they wanted. You have to tell what the servant asked the master.
The servant said, "My mother wants to see her grandson swinging on a swing of gold."
74.71 %
90 votes
logicstorymath

You are standing in a house in the middle of the countryside. There is a small hole in one of the interior walls of the house, through which 100 identical wires are protruding. From this hole, the wires run underground all the way to a small shed exactly 1 mile away from the house, and are protruding from one of the shed's walls so that they are accessible from inside the shed. The ends of the wires coming out of the house wall each have a small tag on them, labeled with each number from 1 to 100 (so one of the wires is labeled "1", one is labeled "2", and so on, all the way through "100"). Your task is to label the ends of the wires protruding from the shed wall with the same number as the other end of the wire from the house (so, for example, the wire with its end labeled "47" in the house should have its other end in the shed labeled "47" as well). To help you label the ends of the wires in the shed, there are an unlimited supply of batteries in the house, and a single lightbulb in the shed. The way it works is that in the house, you can take any two wires and attach them to a single battery. If you then go to the shed and touch those two wires to the lightbulb, it will light up. The lightbulb will only light up if you touch it to two wires that are attached to the same battery. You can use as many of the batteries as you want, but you cannot attach any given wire to more than one battery at a time. Also, you cannot attach more than two wires to a given battery at one time. (Basically, each battery you use will have exactly two wires attached to it). Note that you don't have to attach all of the wires to batteries if you don't want to. Your goal, starting in the house, is to travel as little distance as possible in order to label all of the wires in the shed. You tell a few friends about the task at hand. "That will require you to travel 15 miles!" of of them exclaims. "Pish posh," yells another. "You'll only have to travel 5 miles!" "That's nonsense," a third replies. "You can do it in 3 miles!" Which of your friends is correct? And what strategy would you use to travel that number of miles to label all of the wires in the shed?
Believe it or not, you can do it travelling only 3 miles! The answer is rather elegant. Starting from the house, don't attach wires 1 and 2 to any batteries, but for the remaining wires, attach them in consecutive pairs to batteries (so attach wires 3 and 4 to the same battery, attach wires 5 and 6 to the same battery, and so on all the way through wires 99 and 100). Now travel 1 mile to the shed, and using the lightbulb, find all pairs of wires that light it up. Put a rubberband around each pair or wires that light up the lightbulb. The two wires that don't light up any lightbulbs are wires 1 and 2 (though you don't know yet which one of them is wire 1 and which is wire 2). Put a rubberband around this pair of wires as well, but mark it so you remember that they are wires 1 and 2. Now go 1 mile back to the house, and attach odd-numbered wires to batteries in the following pairs: (1 and 3), (5 and 7), (9 and 11), and so on, all the way through (97 and 99). Similarly, attach even-numbered wires to batteries in the following pairs: (4 and 6), (8 and 10), (12 and 14), and so on, all the way through (96 and 98). Note that in this round, we didn't attach wire 2 or wire 100 to any batteries. Finally, travel 1 mile back to the shed. You're now in a position to label all of the wires here. First, remember we know the pair of wires that are, collectively, wires 1 and 2. So test wires 1 and 2 with all the other wires to see what pair lights up the lightbulb. The wire from wires 1 and 2 that doesn't light up the bulb is wire 2 (which, remember, we didn't connect to a battery), and the other is wire 1, so we can label these as such. Furthermore, the wire that, with wire 1, lights up a lightbulb, is wire 3 (remember how we connected the wires this round). Now, the other wire in the rubber band with wire 3 is wire 4 (we know this from the first round), and the wire that, with wire 4, lights up the lightbulb, is wire 6 (again, because of how we connected the wires to batteries this round). We can continue labeling batteries this way (next we'll label wire 7, which is rubber-banded to wire 6, and then we'll label wire 9, which lights up the lightbulb with wire 7, and so on). At the end, we'll label wire 97, and then wire 99 (which lights up the lightbulb with wire 97), and finally wire 100 (which isn't connected to a battery this round, but is rubber-banded to wire 99). And we're done, having travelled only 3 miles!
74.29 %
70 votes
logicstoryclever

You've been placed on a course of expensive medication in which you are to take one tablet of Plusin and one tablet of Minusin daily. You must be careful that you take just one of each because taking more of either can have serious side effects. Taking Plusin without taking Minusin, or vice versa, can also be very serious, because they must be taken together in order to be effective. In summary, you must take exactly one of the Plusin pills and one of the Minusin pills at one time. Therefore, you open up the Plusin bottle, and you tap one Plusin pill into your hand. You put that bottle aside and you open the Minusin bottle. You do the same, but by mistake, two Minusins fall into your hand with the Plusin pill. Now, here's the problem. You weren't watching your hand as the pills fell into it, so you can't tell the Plusin pill apart from the two Minusin pills. The pills look identical. They are both the same size, same weight (10 micrograms), same color (Blue), same shape (perfect square), same everything, and they are not marked differently in any way. What are you going to do? You cannot tell which pill is which, and they cost $500 a piece, so you cannot afford to throw them away and start over again. How do you get your daily dose of exactly one Plusin and exactly one Minusin without wasting any of the pills?
Carefully cut each of the three pills in half, and carefully separate them into two piles, with half of each pill in each pile. You do not know which pill is which, but you are 100% sure that each of the two piles now contains two halves of Minusin and half of Plusin. Now go back into the Plusin bottle, take out a pill, cut it in half, and add one half to each stack. Now you have two stacks, each one containing two halves of Plusin and two halves of Minusin. Take one stack of pills today, and save the second stack for tomorrow.
74.29 %
93 votes
logicstoryclever

It was a Pink Island. There were 201 individuals (perfect logicians) lived in the island. Among them 100 people were blue eyed people, 100 were green eyed people and the leader was a black eyed one. Except the leader, nobody knew how many individuals lived in the island. Neither have they known about the color of the eyes. The leader was a very strict person. Those people can never communicate with others. They even cannot make gestures to communicate. They can only talk and communicate with the leader. It was a prison for those 200 individuals. However, the leader provided an opportunity to leave the island forever but on one condition. Every morning he questions the individuals about the color of the eyes! If any of the individuals say the right color, he would be released. Since they were unaware about the color of the eyes, all 200 individuals remained silent. When they say wrong color, they were eaten alive to death. Afraid of punishment, they remained silent. One day, the leader announced that "at least 1 of you has green eyes! If you say you are the one, come and say, I will let you go if you are correct! But only one of you can come and tell me!" How many green eyed individuals leave the island and in how many days?
All 100 green eyed individuals will leave on the 100th night. Consider, there is only one green eyed individual lived in the island. He will look at all the remaining individuals who have blue eyes. So, he can get assured that he has green eyes! Now consider 2 people with green eyes. Only reason the other green-eyed person wouldn't leave on the first night is because he sees another person with green eyes. Seeing no one else with green eyes, each of these two people realize it must be them. So both leaves on second night. This is the same for any number. Five people with green eyes would leave on the fifth night and 100 on the 100th, all at once. Search: Monty Hall problem Why it's important for the solution that the leader said the new information "at least 1 of you has green eyes", when they must knew from the beginning, that there are no less than 99 green-eyed people on the island? Because they cannot depart the island without being certain, they cannot begin the process of leaving until the guru speaks, and common knowledge is attained. Search: Common knowledge (logic)
74.17 %
65 votes
cleanstorylogicclever

After recent events, Question Mark is annoyed with his brother, Skid Mark. Skid thought it would be funny to hide Question's wallet. He told Question that he would get it back if he finds it. So, first off, Skid laid five colored keys in a row. One of them is a key to a room where Skid is hiding Question's wallet. Using the clues, can you determine the order of the keys and which is the right key? Red: This key is somewhere to the left of the key to the door. Blue: This key is not at one of the ends. Green: This key is three spaces away from the key to the door (2 between). Yellow: This key is next to the key to the door. Orange: This key is in the middle.
The order (from left to right) is Green, Red, Orange, Blue, Yellow. The blue key is the key to the door.
74.17 %
88 votes