logicSuppose you want to send in the mail a valuable object to a friend. You have a box which is big enough to hold the object. The box has a locking ring which is large enough to have a lock attached and you have several locks with keys. However, your friend does not have the key to any lock that you have. You cannot send the key in an unlocked box since it may be stolen or copied. How do you send the valuable object, locked, to your friend - so it may be opened by your friend?

Send the box with a lock attached and locked. Your friend attaches his or her own lock and sends the box back to you. You remove your lock and send it back to your friend. You remove your lock and send it back to your friend. Your friend may then remove the lock she or he put on and open the box.

## Similar riddles

See also best riddles or new riddles.

logicmathA swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
How can the swan succesfully escape?

Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference).
From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore.
The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed.
The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run:
[0.75R feet + 1 millimeter] * 4 < R*pi
[This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.]
Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.

cleanlogicshortTwo sentries were on duty outside a barracks. One faced up the road to watch for anyone approaching from the North. The other looked down the road to see if anyone was approached from the South. Suddenly one of them said to the other, "Why are you smiling?" How did he know that his companion was smiling?

Although the guards were looking in opposite directions, they were not back to back. They were facing each other.

cleanfunnylogicshortWhat kind of tree can you carry in your hand?

A palm.

logicYou have just purchased a small company called Company X. Company X has N employees, and everyone is either an engineer or a manager. You know for sure that there are more engineers than managers at the company.
Everyone at Company X knows everyone else's position, and you are able to ask any employee about the position of any other employee. For example, you could approach employee A and ask "Is employee B an engineer or a manager?" You can only direct your question to one employee at a time, and can only ask about one other employee at a time. You're allowed to ask the same employee multiple questions if you want.
Your goal is to find at least one engineer to solve a huge problem that has just hit the company's factory. The problem is so urgent that you only have time to ask N-1 total questions.
The major problem with questioning the employees, however, is that while the engineers will always tell you the truth about other employees' roles, the managers may lie to you if they like. You can assume that the managers will do their best to confuse you.
How can you find at least one engineer by asking at most N-1 questions?

You can find at least one engineer using the following process:
Put all of the employees in a conference room. If there happen to be an even number of employees, pick one at random and send him home for the day so that we start with an odd number of employees. Note that there will still be more engineers than managers after we send this employee home.
Then call them out one at a time in any order. You will be forming them into a line as follows:
If there is nobody currently in the line, put the employee you just called out in the line.
Otherwise, if there is anybody in the line, then we do the following. Let's call the employee currently at the front of the line Employee_Front, and call the employee who we just called out of the conference room Employee_Next.
So ask Employee_Front if Employee_Next is a manager or an engineer.
If Employee_Front says "manager", then send both Employee_Front and Employee_Next home for the day.
However, if Employee_Front says "engineer", then put Employee_Next at the front of the line.
Keep doing this until you've called everyone out of the conference room. Notice that at this point, you'll have asked N-1 or less questions (you asked at most one question each time you called an employee out except for the first employee, when you didn't ask a question, so that's at most N-1 questions).
When you're done calling everyone out of the conference room, the person at the front of the line is an engineer. So you've found your engineer!
But the real question: how does this work?
We can prove this works by showing a few things.
First, let's show that if there are any engineers in the line, then they must be in front of any managers.
We'll show this with a proof by contradiction. Assume that there is a manager in front of an engineer somewhere in the line. Then it must have been the case that at some point, that engineer was Employee_Front and that manager was Employee_Next. But then Employee_Front would have said "manager" (since he is an engineer and always tells the truth), and we would have sent them both home. This contradicts their being in the line at all, and thus we know that there can never be a manager in front of an engineer in the line.
So now we know that after the process is done, if there are any engineers in the line, then they will be at the front of the line. That means that all we have to prove now is that there will be at least one engineer in the line at the end of the process, and we'll know that there will be an engineer at the front.
So let's show that there will be at least one engineer in the line. To see why, consider what happens when we ask Employee_Front about Employee_Next, and Employee_Front says "manager". We know for sure that in this case, Employee_Front and Employee_Next are not both engineers, because if this were the case, then Employee_Front would have definitely says "engineer". Put another way, at least one of Employee_Front and Employee_Next is a manager. So by sending them both home, we know we are sending home at least one manager, and thus, we are keeping the balance in the remaining employees that there are more engineers than managers.
Thus, once the process is over, there will be more engineers than managers in the line (this is also sufficient to show that there will be at least one person in the line once the process is over). And so, there must be at least one engineer in the line.
Put altogether, we proved that at the end of the process, there will be at least one engineer in the line and that any engineers in the line must be in front of any managers, and so we know that the person at the front of the line will be an engineer.

cleanfunnylogicA blind man walks into a hardware store to buy a hammer. There are hammers hanging behind the front desk, but obviously the blind man isn't able to see them. And yet a few minutes later, he happily walks out of the store, having just purchased a new hammer.
How did he do it?

He walks up the the front desk where the clerk is working and says "I'd like to buy a hammer."

logicshortA king has 100 identical servants, each with a different rank between 1 and 100. At the end of each day, each servant comes into the king's quarters, one-by-one, in a random order, and announces his rank to let the king know that he is done working for the day. For example, servant 14 comes in and says "Servant 14, reporting in."
One day, the king's aide comes in and tells the king that one of the servants is missing, though he isn't sure which one.
Before the other servants begin reporting in for the night, the king asks for a piece of paper to write on to help him figure out which servant is missing. Unfortunately, all that's available is a very small piece that can only hold one number at a time. The king is free to erase what he writes and write something new as many times as he likes, but he can only have one number written down at a time.
The king's memory is bad and he won't be able to remember all the exact numbers as the servants report in, so he must use the paper to help him.
How can he use the paper such that once the final servant has reported in, he'll know exactly which servant is missing?

When the first servant comes in, the king should write down his number. For each other servant that reports in, the king should add that servant's number to the current number written on the paper, and then write this new number on the paper.
Once the final servant has reported in, the number on the paper should equal
(1 + 2 + 3 + ... + 99 + 100) - MissingServantsNumber
Since (1 + 2 + 3 + ... + 99 + 100) = 5050, we can rephrase this to say that the number on the paper should equal
5050 - MissingServantsNumber
So to figure out the missing servant's number, the king simply needs to subtract the number written on his paper from 5050:
MissingServantsNumber = 5050 - NumberWrittenOnThePaper

logicA man eats dinner, goes up to his bedroom, turns off the lights, and goes to sleep. In the morning, he wakes up and looks outside. Horrified at what he sees, he hurls himself out his window to his death.
Why does he do this?

The man was a lighthouse operator. He wasn't supposed to turn off his lights. When he wakes up in the morning, he sees a giant ship that has crashed into the land, causing much catastrophe. Unable to go on, he decides to take his own life.

logic Betty signals to the headwaiter in a restaurant, and says, ''There is a fly in my tea.'' The waiter says ''No problem Madam. I will bring you a fresh cup of tea.'' A few minutes later Betty shouts, ''Get me the manager! This is the same cup of tea.'' How did she know? Hint: The tea is still hot.

Betty had already put sugar in her tea before sending it back. When the "new" cup came, it was already tasted sweet.

logicYou are killed in a plane crash and find yourself in front of 2 doors: one leads to heaven and one will lead you to hell for eternity. There is an identical troll at each door. You find instructions posted on the wall behind you. You can ask only one question and you can only direct it to only one of the trolls. One troll will always lie to you - regardless of your question - and the other will always tell you the truth. And only the trolls themselves know which one will lie and which one will be truthful. That is all that you are told.... What is the one and only question that will ensure you passage to heaven, and why?

Ask any of the tolls this question. "If I were to ask the other troll which is the door to Heaven, which door would he point to?" Now when the troll answers by pointing to one of the doors you simply take the other door.

cleanlogicshortA girl is sitting in a house at night that has no lights on at all. There is no lamp, no candle, nothing. Yet she is reading. How?

The woman is blind and is reading braille.