Riddle #880


Five Men Like Pete

Pete is a worker on a large ship with hundreds of other men. He is constantly making mistakes, tying ropes the wrong way, steering the ship the wrong way, and making other blunders. One time he accidentally caused the ship to get stuck in a shallow shore, causing thousands of dollars in damage. However, when Steve, the captain of the ship, is asked about Pete, Steve says "I wish we had five men like Pete on this ship." Why would he say this?
90.04 %
42 votes

Similar riddles

See also best riddles or new riddles.


Two coins

If you have two coins which total 35 cents and one of the coins is not a dime, what are the two coins?
A quarter and a dime. One coin is not a dime, but the other one is.
93.05 %
36 votes


Dead Man in the Desert

A man is found dead in the desert. He is wearing only his underwear. Half of a straw is found nearby. How did this man die?
The man was flying in a hot-air balloon with another man over the desert. The balloon started to go down because of excess weight. Both men would die if they ended up stranded in the desert, so they stripped down to their underwear and threw their clothes off the balloon to try to reduce the weight. Unfortunately, that didn't work well enough. So they drew straws to decide who would jump. The dead man pulled the short straw and jumped out of the balloon.
93.70 %
40 votes


Same Number of Handshakes

At a dinner party, many of the guests exchange greetings by shaking hands with each other while they wait for the host to finish cooking. After all this handshaking, the host, who didn't take part in or see any of the handshaking, gets everybody's attention and says: "I know for a fact that at least two people at this party shook the same number of other people's hands." How could the host know this? Note that nobody shakes his or her own hand.
Assume there are N people at the party. Note that the least number of people that someone could shake hands with is 0, and the most someone could shake hands with is N-1 (which would mean that they shook hands with every other person). Now, if everyone at the party really were to have shaken hands with a different number of people, then that means somone must have shaken hands with 0 people, someone must have shaken hands with 1 person, and so on, all the way up to someone who must have shaken hands with N-1 people. This is the only possible scenario, since there are N people at the party and N different numbers of possible people to shake hands with (all the numbers between 0 and N-1 inclusive). But this situation isn't possible, because there can't be both a person who shook hands with 0 people (call him Person 0) and a person who shook hands with N-1 people (call him Person N-1). This is because Person 0 shook hands with nobody (and thus didn't shake hands with Person N-1), but Person N-1 shook hands with everybody (and thus did shake hands with Person 0). This is clearly a contradiction, and thus two of the people at the party must have shaken hands with the same number of people.
93.39 %
38 votes


Grandma and Cake

You are on your way to visit your Grandma, who lives at the end of the valley. It's her anniversary, and you want to give her the cakes you've made. Between your house and her house, you have to cross 5 bridges, and as it goes in the land of make believe, there is a troll under every bridge! Each troll, quite rightly, insists that you pay a troll toll. Before you can cross their bridge, you have to give them half of the cakes you are carrying, but as they are kind trolls, they each give you back a single cake. How many cakes do you have to leave home with to make sure that you arrive at Grandma's with exactly 2 cakes?
2 Cakes How? At each bridge you are required to give half of your cakes, and you receive one back. Which leaves you with 2 cakes after every bridge.
93.70 %
40 votes


Reading in the dark

A girl is sitting in a house at night that has no lights on at all. There is no lamp, no candle, nothing. Yet she is reading. How?
The woman is blind and is reading braille.
93.98 %
42 votes


Cards in the dark

You are standing in a pitch-dark room. A friend walks up and hands you a normal deck of 52 cards. He tells you that 13 of the 52 cards are face-up, the rest are face-down. These face-up cards are distributed randomly throughout the deck. Your task is to split up the deck into two piles, using all the cards, such that each pile has the same number of face-up cards. The room is pitch-dark, so you can't see the deck as you do this. How can you accomplish this seemingly impossible task?
Take the first 13 cards off the top of the deck and flip them over. This is the first pile. The second pile is just the remaining 39 cards as they started. This works because if there are N face-up cards in within the first 13 cards, then there will be (13 - N) face up cards in the remaining 39 cards. When you flip those first 13 cards, N of which are face-up, there will now be N cards face-down, and therefore (13 - N) cards face-up, which, as stated, is the same number of face-up cards in the second pile.
94.36 %
45 votes

logicshortwhat am I

It will follow you

If will follow you for 1000 miles but not miss home. It desires neither food nor flowers. It fears not water, fire, knives, nor soldiers. But it disappears when the sun sets behind the western mountains. Who Am I?
90.67 %
45 votes


Crossing the Bridge Puzzle

Four people need to cross a rickety bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?
It is 17 mins. 1 and 2 go first, then 1 comes back. Then 7 and 10 go and 2 comes back. Then 1 and 2 go again, it makes a total of 17 minutes.
93.70 %
40 votes


Sunday trip

A man rode out of town on Sunday, he stayed a whole night at a hotel and rode back to town the next day on Sunday. How is this possible?
His Horse was called Sunday!
93.55 %
39 votes