Riddle #835

logic

Past the Bridge Guard

A guard is stationed at the entrance to a bridge. He is tasked to shoot anyone who tries to cross to the other side of the bridge, and to turn away anyone who comes in from the opposite side of the bridge. You are on his side of the bridge and want to escape to the other side. Because the bridge is old and rickety, anyone who tries to cross it does so at a constant speed, and it always takes exactly 10 minutes to cross. The guard comes out of his post every 6 minutes and looks down the bridge for any people trying to leave, and at all other times he sits in his post and snoozes. You know you can sneak past him when he's sleeping, but the problem is that you won't be able to make it all the way to the other side of the bridge before he sees you (since he comes out every 6 minutes, but it takes 10 minutes to cross). One day a brilliant idea comes to you, and soon you've successfully crossed to the other side of the bridge without being shot. How did you do it?
Right after the guard goes back to his post after checking the bridge, you sneak by and make your way down the bridge. After a little bit less than 6 minutes, you turn around and start walking back toward the guard. He will come out and see you, and assume that you are a visitor coming from the other side of the bridge, since you're only about 4 minutes from the end of the other side of the bridge. He will go back into his post since he doesn't plan to turn you away until you reach him, and then you turn back around and make your way the rest of the way to the other side of the bridge.
94.11 %
43 votes

Similar riddles

See also best riddles or new riddles.

logic

Miraculously unhurt

Brad starred through the dirty soot-smeared window on the 22nd floor of the office tower. Overcome with depression he slid the window open and jumped through it. It was a sheer drop outside the building to the ground. Miraculously after he landed he was completely unhurt. Since there was nothing to cushion his fall or slow his descent, how could he have survived the fall?
Brad was so sick and tired of window washing, he opened the window and jumped inside.
91.39 %
49 votes

logic

Quick bridge-crossing

Four people come to an old bridge in the middle of the night. The bridge is rickety and can only support 2 people at a time. The people have one flashlight, which needs to be held by any group crossing the bridge because of how dark it is. Each person can cross the bridge at a different rate: one person takes 1 minute, one person takes 2 minutes, one takes 5 minutes, and the one person takes 10 minutes. If two people are crossing the bridge together, it will take both of them the time that it takes the slower person to cross. Unfortunately, there are only 17 minutes worth of batteries left in the flashlight. How can the four travellers cross the bridge before time runs out?
The two keys here are: You want the two slowest people to cross together to consolidate their slow crossing times. You want to make sure the faster people are set up in order to bring the flashlight back quickly after the slow people cross. So the order is: 1-minute and 2-minute cross (2 minute elapsed) 1-minute comes back (3 minutes elapsed) 5-minute and 10-minute cross (13 minutes elapsed) 2-minute comes back (15 minutes elapsed) 1-minute and 2-minute cross (17 minutes elapsed)
93.39 %
38 votes

funnylogicpoems

Played all night till break of day

Four jolly men sat down to play, and played all night till break of day. They played for gold and not for fun, with separate scores for every one. Yet when they came to square accounts, they all had made quite fair amounts! Can you the paradox explain? If no one lost, how could all gain?
The players were musician.
87.96 %
47 votes

logic

Paying With Rings

A man comes to a small hotel where he wishes to stay for 7 nights. He reaches into his pockets and realizes that he has no money, and the only item he has to offer is a gold chain, which consists of 7 rings connected in a row (not in a loop). The hotel proprietor tells the man that it will cost 1 ring per night, which will add up to all 7 rings for the 7 nights. "Ok," the man says. "I'll give you all 7 rings right now to pre-pay for my stay." "No," the proprietor says. "I don't like to be in other people's debt, so I cannot accept all the rings up front." "Alright," the man responds. "I'll wait until after the seventh night, and then give you all of the rings." "No," the proprietor says again. "I don't like to ever be owed anything. You'll need to make sure you've paid me the exact correct amount after each night." The man thinks for a minute, and then says "I'll just cut each of my rings off of the chain, and then give you one each night." "I do not want cut rings," the proprietor says. "However, I'm willing to let you cut one of the rings if you must." The man thinks for a few minutes and then figures out a way to abide by the proprietor's rules and stay the 7 nights in the hotel. What is his plan?
The man cuts the ring that is third away from the end of the chain. This leaves him with 3 smaller chains of length 1, 2, and 4. Then, he gives rings to the proprietor as follows: After night 1, give the proprietor the single ring After night 2, take the single ring back and give the proprietor the 2-ring chain After night 3, give the proprietor the single ring, totalling 3 rings with the proprietor After night 4, take back the single ring and the 2-ring chain, and give the proprietor the 4-ring chain After night 5, give the proprietor the single ring, totalling 5 rings with the proprietor After night 6, take back the single ring and give the proprietor the 2-ring chain, totalling 6 rings with the proprietor After night 7, give the proprietor the single ring, totalling 7 rings with the proprietor
90.47 %
44 votes

logic

Twelve balls, one different

You have twelve balls, identical in every way except that one of them weighs slightly less or more than the balls. You have a balance scale, and are allowed to do 3 weighings to determine which ball has the different weight, and whether the ball weighs more or less than the other balls. What process would you use to weigh the balls in order to figure out which ball weighs a different amount, and whether it weighs more or less than the other balls?
Take eight balls, and put four on one side of the scale, and four on the other. If the scale is balanced, that means the odd ball out is in the other 4 balls. Let's call these 4 balls O1, O2, O3, and O4. Take O1, O2, and O3 and put them on one side of the scale, and take 3 balls from the 8 "normal" balls that you originally weighed, and put them on the other side of the scale. If the O1, O2, and O3 balls are heavier, that means the odd ball out is among these, and is heavier. Weigh O1 and O2 against each other. If one of them is heavier than the other, this is the odd ball out, and it is heavier. Otherwise, O3 is the odd ball out, and it is heavier. If the O1, O2, and O3 balls are lighter, that means the odd ball out is among these, and is lighter. Weigh O1 and O2 against each other. If one of them is lighter than the other, this is the odd ball out, and it is lighter. Otherwise, O3 is the odd ball out, and it is lighter. If these two sets of 3 balls weigh the same amount, then O4 is the odd ball out. Weight it against one of the "normal" balls from the first weighing. If O4 is heavier, then it is heavier, if it's lighter, then it's lighter. If the scale isn't balanced, then the odd ball out is among these 8 balls. Let's call the four balls on the side of the scale that was heavier H1, H2, H3, and H4 ("H" for "maybe heavier"). Let's call the four balls on the side of the scale that was lighter L1, L2, L3, and L4 ("L" for "maybe lighter"). Let's also call each ball from the 4 in the original weighing that we know aren't the odd balls out "Normal" balls. So now weigh [H1, H2, L1] against [H3, L2, Normal]. -If the [H1, H2, L1] side is heavier (and thus the [H3, L2, Normal] side is lighter), then this means that either H1 or H2 is the odd ball out and is heavier, or L2 is the odd ball out and is lighter. -So measure [H1, L2] against 2 of the "Normal" balls. -If [H1, L2] are heavier, then H1 is the odd ball out, and is heavier. -If [H1, L2] are lighter, then L2 is the odd ball out, and is lighter. -If the scale is balanced, then H2 is the odd ball out, and is heavier. -If the [H1, H2, L1] side is lighter (and thus the [H3, L2, Normal] side is heavier), then this means that either L1 is the odd ball out, and is lighter, or H3 is the odd ball out, and is heavier. -So measure L1 and H3 against two "normal" balls. -If the [L1, H3] side is lighter, then L1 is the odd ball out, and is lighter. -Otherwise, if the [L1, H3] side is heavier, then H3 is the odd ball out, and is heavier. If the [H1, H2, L1] side and the [H3, L2, Normal] side weigh the same, then we know that either H4 is the odd ball out, and is heavier, or one of L3 or L4 is the odd ball out, and is lighter. So weight [H4, L3] against two of the "Normal" balls. If the [H4, L3] side is heavier, then H4 is the odd ball out, and is heavier. If the [H4, L3] side is lighter, then L3 is the odd ball out, and is lighter. If the [H4, L3] side weighs the same as the [Normal, Normal] side, then L4 is the odd ball out, and is lighter.
91.22 %
48 votes

logicshort

Egyptian coin

An archeologist claims he found a Roman coin dated 46 B.C. in Egypt. How much should Louvre Museum pay for the coin? Note: Roman coins can really be found in Egypt
Nothing. That coin is as phony as a three dollar bill. In 46 B.C., they wouldn't have known how many years before Christ it was.
89.33 %
39 votes

logicmath

Tiling Without Corners

You can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square. But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board. Can you explain why tiling this board isn't possible?
Color in the chessboard, alternating with red and blue tiles. Then color all of your tiles half red and half blue. Whenever you place a tile down, you can always make it so that the red part of the tile is on a red square and the blue part of the tile is on the blue square. Since you'll need to place 31 tiles on the board (to cover the 62 squares), you would have to be able to cover 31 red squares and 31 blue squares. But when you took away the two corners, you can see that you are taking away two red spaces, leaving 30 red squares and 32 blue squares. There is no way to cover 30 red squares and 32 blue squares with the 31 tiles, since these tiles can only cover 31 red squares and 31 blue squares, and thus, tiling this board is not possible.
90.26 %
43 votes

cleanfunnylogicshort

Black truck

A man was driving a black truck. His lights were not on. The moon was not out. A lady was crossing the street. How did the man see her?
It was a bright, sunny day.
83.63 %
67 votes

logic

The farmer, the engineer, the physicist, and the mathematician

A farmer challenges an engineer, a physicist, and a mathematician to fence off the largest amount of area using the least amount of fence. The engineer made his fence in a circle and said it was the most efficient. The physicist made a long line and said that the length was infinite. Then he said that fencing half of the Earth was the best. The mathematician laughed at the others and with his design, beat the others. What did he do?
83.36 %
50 votes

cleanlogic

He is my son

A boy was rushed to the hospital emergency room. The ER doctor saw the boy and said, "I cannot operate on this boy. He is my son." But the doctor was not the boy's father. How could that be?
The doctor was his mom.
86.62 %
42 votes