logicYou're walking down a path and come to two doors. One of the doors leads to a life of prosperity and happiness, and the other door leads to a life of misery and sorrow. You don't know which door is which.
In front of the door is ONE man. You know that this man either always lies, or always tells the truth, but you don't know which. The man knows which door is which.
You are allowed to ask the man ONE yes-or-no question to figure out which door to go through. To make things more difficult, the man is very self-centered, so you are only allowed to ask him a question about what he thinks or knows; your question cannot involve what any other person or object (real or hypothetical) might say.
What question should you ask to ensure you go through the good door?

You should ask: "If I asked you if the good door is on the left, would you say yes?"
Notice that this is subtly different than asking "Is the good door on the left?", in that you are asking him IF he would say yes to that question, not what his answer to the question would be. Thus you are asking a question about a question, and if it ends up being the liar you are talking to, this will cause him to lie about a lie and thus tell the truth. The four possible cases are:
The man is a truth-teller and the good door is on the left. He will say "yes".
The man is a truth-teller and the good door is on the right. He will say "no".
The man is a liar and the good door is on the left. He will say "yes" because if you asked him "Is the good door on the left?", he would lie and say "no", and so when you ask him if he would say "yes", he will lie and say "yes".
The man is a liar and the good door is on the right. Similar to the previous example, he'll say "no".
So regardless of whether the man is a truth-teller or a liar, this question will get a "yes" if the door on the left is the good door, and a "no" if it's not.

## Similar riddles

See also best riddles or new riddles.

funnylogicshortYour bike crashed into the dark forest and suddenly you saw and deadly panther and jaguar. You got just one bullet.
What is your escape strategy?

Simple, you must shoot the panther and drive off in the jaguar (car).

logicmathshortA man gave one son 10 cents and another son was given 15 cents. What time is it?

1:45. The man gave away a total of 25 cents. He divided it between two people. Therefore, he gave a quarter to two.

logicA monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain.
Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.

Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain).
Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.

logicmathshortWe all know that square root of number 121 is 11. But do you know what si the square root of the number "12345678987654321" ?

111111111
Explanation:
It's a maths magical square root series as :
Square root of number 121 is 11
Square root of number 12321 is 111
Square root of number 1234321 is 1111
Square root of number 123454321 is 11111
Square root of number 12345654321 is 111111
Square root of number 1234567654321 is 1111111
Square root of number 123456787654321 is 11111111
Square root of number 12345678987654321 is 111111111 (answer)

logicmathshortTake 9 from 6, 10 from 9, 50 from 40 and leave 6. How is it possible?

SIX - 9 (IX) = S
9 (IX) - 10 (X) = I
40 (XL) - 50 (L) = X

logicshortHow far can you run into the woods?

Half way. If you go in any further, you’d be running OUT of the woods.

logicYou have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races.
You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in.
What is the least number of races you can conduct to figure out which 3 horses are fastest?

You need to conduct 7 races.
First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on.
We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races).
This table shows our remaining horses:
A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last).
We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1).
Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3).
Let's look at our updated table, having removed these horses that can't be in the top 3:
A1 B1 C1
A2 B2 C2
A3 B3 C3
We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table:
A1 B1 C1
A2 B2
A3
We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.

cleanfunnylogicshortHow can a pants pocket be empty and still have something in it?

It can have a hole in it.

funnylogicWhy is 6 afraid of 7?

Because seven was hungry and 'seven ate nine' (7, 8, 9).

animalcleanlogicA horse is tied to a fifteen-foot rope and there is a bale of hay 25 feet away from him. The horse however is still able to eat from the hay. How is this possible?

The rope wasn't tied to anything.