A farmer is travelling with a fox, a sheep and a small sack of hay. He comes to a river with a small boat in it. The boat can only support the farmer and one other animal/item. If the farmer leaves the fox alone with the sheep, the fox will eat the sheep. And if the farmer leaves the sheep alone with the hay, the sheep will eat the hay.
How can the farmer get all three as well as himself safely across the river?

The farmer takes the sheep across the river, then returns back.
The farmer takes the fox across the river.
The farmer takes the sheep back to the first side of the river.
The farmer leaves the sheep back on the first side of the river, and takes the hay to the other side.
The farmer returns to the first side of the river.
The farmer brings the sheep back to the second side.

Two Japanese people who have never seen each other meet at the New York Japanese Embassy. They decide to have drinks together at a nearby bar. One of them is the father of the other one's son. How is this possible?

The Japanese are husband and wife and both blind since birth.

Brad starred through the dirty soot-smeared window on the 22nd floor of the office tower. Overcome with depression he slid the window open and jumped through it. It was a sheer drop outside the building to the ground. Miraculously after he landed he was completely unhurt. Since there was nothing to cushion his fall or slow his descent, how could he have survived the fall?

Brad was so sick and tired of window washing, he opened the window and jumped inside.

There are several chickens and rabbits in a cage (with no other types of animals). There are 72 heads and 200 feet inside the cage. How many chickens are there, and how many rabbits?

There are 44 chickens and 28 rabbits in the cage.
Let c be the number of chickens, and r be the number of rabbits.
r + c = 72
4r + 2c = 200
To solve the equations, we multiply the first by two, then subtract the second.
2r + 2c = 144
2r = 56
r = 28
c = 44

Samuel was out for a walk when it started to rain. He did not have an umbrella and he wasn't wearing a hat. His clothes were soaked, yet not a single hair on his head got wet. How could this happen?

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started.
It turns out there are an infinite number of different points on earth where you might be. Can you describe them all?
It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.

One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile.
To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes.
To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.

A swan sits at the center of a perfectly circular lake. At an edge of the lake stands a ravenous monster waiting to devour the swan. The monster can not enter the water, but it will run around the circumference of the lake to try to catch the swan as soon as it reaches the shore. The monster moves at 4 times the speed of the swan, and it will always move in the direction along the shore that brings it closer to the swan the quickest. Both the swan and the the monster can change directions in an instant.
The swan knows that if it can reach the lake's shore without the monster right on top of it, it can instantly escape into the surrounding forest.
How can the swan succesfully escape?

Assume the radius of the lake is R feet. So the circumference of the lake is (2*pi*R). If the swan swims R/4 feet, (or, put another way, 0.25R feet) straight away from the center of the lake, and then begins swimming in a circle around the center, then it will be able to swim around this circle in the exact same amount of time as the monster will be able to run around the lake's shore (since this inner circle's circumference is 2*pi*(R/4), which is exactly 4 times shorter than the shore's circumference).
From this point, the swan can move a millimeter inward toward the lake's center, and begin swimming around the center in a circle from this distance. It is now going around a very slightly smaller circle than it was a moment ago, and thus will be able to swim around this circle FASTER than the monster can run around the shore.
The swan can keep swimming around this way, pulling further away each second, until finally it is on the opposite side of its inner circle from where the monster is on the shore. At this point, the swan aims directly toward the closest shore and begins swimming that way. At this point, the swan has to swim [0.75R feet + 1 millimeter] to get to shore. Meanwhile, the monster will have to run R*pi feet (half the circumference of the lake) to get to where the swan is headed.
The monster runs four times as fast as the swan, but you can see that it has more than four times as far to run:
[0.75R feet + 1 millimeter] * 4 < R*pi
[This math could actually be incorrect if R were very very small, but in that case we could just say the swan swam inward even less than a millimeter, and make the math work out correctly.]
Because the swan has less than a fourth of the distance to travel as the monster, it will reach the shore before the monster reaches where it is and successfully escape.

Many years ago a wealthy old man was near death. He wished to leave his fortune to one of his three children. The old man wanted to know that his fortune would be in wise hands. He stipulated that his estate would be left to the child who would sing him half as many songs as days that he had left to live.The eldest son said he couldn't comply because he didn't know how many days his father had left to live and besides he was too busy. The youngest son said the same thing. The man ended up leaving his money to his third child a daughter. What did his daughter do?

Every other day, the daughter sang her father a song.

A man wanted to enter an exclusive club but did not know the password that was required. He waited by the door and listened. A club member knocked on the door and the doorman said, "twelve." The member replied, "six " and was let in. A second member came to the door and the doorman said, "six." The member replied, "three" and was let in. The man thought he had heard enough and walked up to the door. The doorman said ,"ten" and the man replied, "five." But he was not let in. What was the right answer then?

Three. The doorman lets in those who answer with the number of letters in the word the doorman says.