Logic riddles

logicsimplecleanclever

Your friend pulls out a perfectly circular table and a sack of quarters, and proposes a game. "We'll take turns putting a quarter on the table," he says. "Each quarter must lay flat on the table, and cannot sit on top of any other quarters. The last person to successfully put a quarter on the table wins." He gives you the choice to go first or second. What should you do, and what should your strategy be to win?
You should go first, and put a quarter at the exact center of the table. Then, each time your opponent places a quarter down, you should place your next quarter in the symmetric position on the opposite side of the table. This will ensure that you always have a place to set down our quarter, and eventually your oppponent will run out of space.
88.52 %
62 votes
logicstorycleverclean

A poor miller living with his daughter comes onto hard times and is not able to pay his rent. His evil landlord threatens to evict them unless the daughter marries him. The daughter, not wanting to marry the landlord but fearing that her father won't be able to take being evicted, suggests the following proposition to the landlord. He will put two stones, one white and one black, into a bag in front of the rest of the townspeople. She will pick one stone out of the bag. If she picks the white stone, the landlord will forgive their debt and let them stay, but if she picks the black stone, she will marry the landlord, and her father will be evicted anyway. The landlord agrees to the proposal. Everybody meets in the center of the town. The landlord picks up two stones to put in the bag, but the daughter notices that he secretly picked two black stones. She is about to reveal his deception but realizes that this would embarrass him in front of the townspeople, and he would evict them. She quickly comes up with another plan. What can she do that will allow the landlord save face, while also ensuring that she and her father can stay and that she won't have to marry the landlord?
The daughter picks a stone out, keeps it in her closed hand, and proclaims "this is my stone." She then throws it to the ground, and says "look at the other stone in the bag, and if it's black, that means I picked the white stone." The landlord will reveal the other stone, which is obviously black, and the daughter will have succeeded. The landlord was never revealed as a cheater and thus was able to save face.
88.52 %
62 votes
logicclean

You have twelve balls, identical in every way except that one of them weighs slightly less or more than the balls. You have a balance scale, and are allowed to do 3 weighings to determine which ball has the different weight, and whether the ball weighs more or less than the other balls. What process would you use to weigh the balls in order to figure out which ball weighs a different amount, and whether it weighs more or less than the other balls?
Take eight balls, and put four on one side of the scale, and four on the other. If the scale is balanced, that means the odd ball out is in the other 4 balls. Let's call these 4 balls O1, O2, O3, and O4. Take O1, O2, and O3 and put them on one side of the scale, and take 3 balls from the 8 "normal" balls that you originally weighed, and put them on the other side of the scale. If the O1, O2, and O3 balls are heavier, that means the odd ball out is among these, and is heavier. Weigh O1 and O2 against each other. If one of them is heavier than the other, this is the odd ball out, and it is heavier. Otherwise, O3 is the odd ball out, and it is heavier. If the O1, O2, and O3 balls are lighter, that means the odd ball out is among these, and is lighter. Weigh O1 and O2 against each other. If one of them is lighter than the other, this is the odd ball out, and it is lighter. Otherwise, O3 is the odd ball out, and it is lighter. If these two sets of 3 balls weigh the same amount, then O4 is the odd ball out. Weight it against one of the "normal" balls from the first weighing. If O4 is heavier, then it is heavier, if it's lighter, then it's lighter. If the scale isn't balanced, then the odd ball out is among these 8 balls. Let's call the four balls on the side of the scale that was heavier H1, H2, H3, and H4 ("H" for "maybe heavier"). Let's call the four balls on the side of the scale that was lighter L1, L2, L3, and L4 ("L" for "maybe lighter"). Let's also call each ball from the 4 in the original weighing that we know aren't the odd balls out "Normal" balls. So now weigh [H1, H2, L1] against [H3, L2, Normal]. -If the [H1, H2, L1] side is heavier (and thus the [H3, L2, Normal] side is lighter), then this means that either H1 or H2 is the odd ball out and is heavier, or L2 is the odd ball out and is lighter. -So measure [H1, L2] against 2 of the "Normal" balls. -If [H1, L2] are heavier, then H1 is the odd ball out, and is heavier. -If [H1, L2] are lighter, then L2 is the odd ball out, and is lighter. -If the scale is balanced, then H2 is the odd ball out, and is heavier. -If the [H1, H2, L1] side is lighter (and thus the [H3, L2, Normal] side is heavier), then this means that either L1 is the odd ball out, and is lighter, or H3 is the odd ball out, and is heavier. -So measure L1 and H3 against two "normal" balls. -If the [L1, H3] side is lighter, then L1 is the odd ball out, and is lighter. -Otherwise, if the [L1, H3] side is heavier, then H3 is the odd ball out, and is heavier. If the [H1, H2, L1] side and the [H3, L2, Normal] side weigh the same, then we know that either H4 is the odd ball out, and is heavier, or one of L3 or L4 is the odd ball out, and is lighter. So weight [H4, L3] against two of the "Normal" balls. If the [H4, L3] side is heavier, then H4 is the odd ball out, and is heavier. If the [H4, L3] side is lighter, then L3 is the odd ball out, and is lighter. If the [H4, L3] side weighs the same as the [Normal, Normal] side, then L4 is the odd ball out, and is lighter.
88.42 %
49 votes
logicmathstorycleaninterview

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
88.42 %
49 votes
logiccleversimple

In olden days you are a clever thief charged with treason against the king and sentenced to death. But the king decides to be a little lenient and lets you choose your own way to die. What way should you choose? Remember, you're clever!
I would have chosen to die of "old age". Did you?
88.39 %
96 votes
logicmathcleantricky

You have a sock drawer. It has 4 black socks, 8 brown socks, 2 white socks and 8 tan socks. You need to pull out a matching pair of socks in the dark. There is no light and you couldn't see the socks. How many socks you should pull out in the dark to get one matching pair of socks?
Five. You have only four different colors of socks. If you pick 5, you can surely get one pair of matching socks.
88.20 %
48 votes