## A man was driving a truck

A man was driving a truck at 60 mph. He did not have his headlights on and the moon was not up. Yet he did not hit the woman who crossed the road. How?

He was driving the truck during daytime.

A man was driving a truck at 60 mph. He did not have his headlights on and the moon was not up. Yet he did not hit the woman who crossed the road. How?

He was driving the truck during daytime.

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races.
You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in.
What is the least number of races you can conduct to figure out which 3 horses are fastest?

You need to conduct 7 races.
First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on.
We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races).
This table shows our remaining horses:
A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last).
We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1).
Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3).
Let's look at our updated table, having removed these horses that can't be in the top 3:
A1 B1 C1
A2 B2 C2
A3 B3 C3
We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table:
A1 B1 C1
A2 B2
A3
We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.

A horse is tied to a fifteen-foot rope and there is a bale of hay 25 feet away from him. The horse however is still able to eat from the hay. How is this possible?

The rope wasn't tied to anything.

Justin Case and Auntie Bellum are fellow con artists who deliver coded messages to each other to communicate. Recently Auntie Bellum was put in jail for stealing a rare and expensive diamond. Only a few days after this, Justin Case sent her a friendly letter asking her how she was. On the inside of the envelope of the letter, he hid a code. Yesterday, Auntie Bellum escaped and left the envelope and the letter inside the jail cell. The police did some research and found the code on the inside of the envelope, but they haven't been able to crack it. Could you help the police find out what the message is?
This is the code:
llwatchawtfeclocklnisksundialcirbetimersool

The message was "loose bricks in left wall." The message was put backward with words related to time in between. This is how the message looks when separated:
ll watch awtfe clock Inisk sundial cirbe timer sool
If you take out watch, clock, sundial, and timer, this is what is left:
llawtfelniskcirbesool
Look at this backwards and this is what you have:
loose bricks in left wall
Auntie Bellum took out the bricks and escaped in the night. Then, she put the bricks back where they were.

You just bought a cute rabbit at a pet store. The rabbit can breed once every month, and deliver 7 babies at a time. How many rabbits do you have after 12 months?

One, it takes two rabbits to breed.

A boy was at a carnival and went to a booth where a man said to the boy, "If I write your exact weight on this piece of paper then you have to give me $50, but if I cannot, I will pay you $50."
The boy looked around and saw no scale so he agrees, thinking no matter what the carny writes he'll just say he weighs more or less. In the end the boy ended up paying the man $50. How did the man win the bet?

The man did exactly as he said he would and wrote "your exact weight" on the paper.

A number of people have broken the sound barrier, either in a super-fast car, or in nice fancy planes. However, hundreds of years ago it was broken on horseback. How?

Many people who ride horses carry whips. They crack the whip while they ride the horse. When a whip is cracked, the tip travels faster than the speed of sound, which makes the loud snap. It actually creates a miniature sonic boom of sorts. The whip breaks the sound barrier, thus, it was broken on horseback.

Die without me,
Never thank me.
Walk right through me,
Never feel me.
Always watching,
Never speaking.
Always lurking,
Never seen.

Air.

A boy goes and buys a fishing pole that is 6' 3" long. As he goes to get on the bus, the driver stops him. The driver tells him that he can't take anything longer than 6' onto the bus. The boy goes back into town, purchases one more thing, and the driver allows the boy on the bus. What did the boy buy, and what did he do with it?

The boy bought 6' long box. He put the fishing pole in diagonally and the entire package was only 6'!

Two planes take off at the same exact moment. They are flying across the Atlantic. One leaves New York and is flying to Paris at 500 miles per hour. The other leaves Paris and is flying to New York at only 450 miles per hour. Which one will be closer to Paris when they meet?

They will both the same distance from Paris when they meet!