A king decided to let a prisoner try to escape the prison with his life. The king placed 2 marbles in a jar that was glued to a table. One of the marbles was supposed to be black, and one was supposed to be blue. If the prisoner could pick the blue marble, he would escape the prison with his life. If he picked the black marble, he would be executed. However, the king was very mean, and he wickedly placed 2 black marbles in the jars and no blue marbles. The prisoner witnessed the king only putting 2 black marbles in the jars. If the jar was not see-through and the jar was glued to the table and that the prisoner was mute so he could not say anything, how did he escape with his life?
The prisoner grabbed one of the marbles from the jar and concealed it in his hand. He then swallowed it, and picked up the other marble and showed everyone. The marble was black, and since the other marble was swallowed, it was assumed to be the blue one. So the mean king had to set him free.
Your enemy challenges you to play Russian Roulette with a 6-cylinder pistol (meaning it has room for 6 bullets). He puts 2 bullets into the gun in consecutive slots, and leaves the next four slots blank. He spins the barrel and hands you the gun. You point the gun at yourself and pull the trigger. It doesn't go off. Your enemy tells you that you need to pull the trigger one more time, and that you can choose to either spin the barrel at random, or not, before pulling the trigger again. Spinning the barrel will position the barrel in a random position.
Assuming you'd like to live, should you spin the barrel or not before pulling the trigger again?
You are better off shooting again without spinning the barrel.
Given that the gun didn't fire the first time, it was pointing to one of the four empty slots. Because your enemy spun the cylinder randomly, it would have been pointing to any of these empty slots with equal probability. Three of these slots would not fire again after an additional trigger-pull, and one of them would. Thus, by not spinning the barrel, there is a 1/4 chance that pulling the trigger again would fire the gun.
Alternatively, if you spin the barrel, it will point to each of the 6 slots with equal probability. Because 2 of these 6 slots have bullets in them, there would be a 2/6 = 1/3 chance that the gun would fire after spinning the barrel.
Thus, you are better off not spinning the barrel.
A deliveryman comes to a house to drop off a package. He asks the woman who lives there how many children she has.
"Three," she says. "And I bet you can't guess their ages."
"Ok, give me a hint," the deliveryman says.
"Well, if you multiply their ages together, you get 36," she says. "And if you add their ages together, the sum is equal to our house number."
The deliveryman looks at the house number nailed to the front of her house. "I need another hint," he says.
The woman thinks for a moment. "My youngest son will have a lot to learn from his older brothers," she says.
The deliveryman's eyes light up and he tells her the ages of her three children. What are their ages?
Their ages are 1, 6, and 6. We can figure this out as follows:
Given that their ages multiply out to 36, the possible ages for the children are:
1, 1, 36 (sum = 38)
1, 2, 18 (sum = 21)
1, 3, 12 (sum = 16)
1, 4, 9 (sum = 14)
1, 6, 6 (sum = 13)
2, 2, 9 (sum = 13)
2, 3, 6 (sum = 11)
3, 3, 4 (sum = 10)
When the woman tells the deliveryman that the children's ages add up to her street number, he still doesn't know their ages. The only way this could happen is that there is more than one possible way for the children's ages to add up to the number on the house (or else he would have known their ages when he looked at the house number). Looking back at the possible values for the children's ages, you can see that there is only one situation in which there are multiple possible values for the children's ages that add up to the same sum, and that is if their ages are either 1, 6, and 6 (sums up to 13), or 2, 2, and 9 (also sums up to 13). So these are now the only possible values for their ages.
When the woman then tells him that her youngest son has two older brothers (who we can tell are clearly a number of years older), the only possible situation is that their ages are 1, 6, and 6.