Long difficult logic riddles

logicsimpleclean

Two convicts are locked in a cell. There is an unbarred window high up in the cell. No matter if they stand on the bed or one on top of the other they can't reach the window to escape. They then decide to tunnel out. However, they give up with the tunnelling because it will take too long. Finally one of the convicts figures out how to escape from the cell. What is his plan?
His plan is to dig the tunnel and pile up the dirt to climb up to the window to escape.
73.90 %
78 votes
logicstoryclean

One day, Emperor Akbar posed a question to Birbal. He asked him what Birbal would choose if he offered either justice or a gold coin. "The gold coin," said Birbal without hesitation. On hearing this, Akbar was taken aback. "You would prefer a gold coin to justice?" he asked, not believing his own ears. "Yes," said Birbal. The other courtiers were amazed by Birbal's display of idiocy. They were full of glee that Birbal had finally managed himself to do what these courtiers had not been able to do for a long time - discredit Birbal in the emperor's eyes! "I would have been disappointed if this was the choice made even by my lowliest of servants," continued the emperor. "But coming from you it's not only disappointing, but shocking and sad. I did not know you were so debased!" How did Birbal justify his answer to the enraged and hurt Emperor?
"One asks for what one does not have, Your Majesty." said Birbal, smiling gently and in quiet tones. "Under Your Majesty´s rule, justice is available to everybody. But I am a spendthrift and always short of money and therefore I said I would choose the gold coin." The answer immensely pleased the emperor and respect for Birbal was once again restored in the emperor's eyes.
73.59 %
121 votes
logicstorycleansimple

A wise man lived on a hill above a small town. The townspeople often approached him to solve their difficult problems and riddles. One day, two lads decided to fool him. They took a dove and set off up the hill. Standing before him, one of the lads said "Tell me, wise man, is the dove I hold behind my back dead or alive?" The man smiled and said "I cannot answer your question correctly". Even though the wise man knew the condition of the dove, why wouldn't he state whether it was dead or alive?
The man told the two lads, "If I say the dove is alive, you will the bird and show me that it is dead. If I say that it is dead, you will release the dove and it will fly away. So you see I cannot answer your question. Search: Schrödinger's cat
73.27 %
128 votes
logicmath

There are 5 pirates in a ship. Pirates have hierarchy C1, C2, C3, C4 and C5. C1 designation is the highest and C5 is the lowest. These pirates have three characteristics: a. Every pirate is so greedy that he can even take lives to make more money. b. Every pirate desperately wants to stay alive. c. They are all very intelligent. There are total 100 gold coins on the ship. The person with the highest designation on the deck is expected to make the distribution. If the majority on the deck does not agree to the distribution proposed, the highest designation pirate will be thrown out of the ship (or simply killed). The first priority of the pirates is to stay alive and second to maximize the gold they get. Pirate 5 devises a plan which he knows will be accepted for sure and will maximize his gold. What is his plan?
To understand the answer,we need to reduce this problem to only 2 pirates. So what happens if there are only 2 pirates. Pirate 2 can easily propose that he gets all the 100 gold coins. Since he constitutes 50% of the pirates, the proposal has to be accepted leaving Pirate 1 with nothing. Now let's look at 3 pirates situation, Pirate 3 knows that if his proposal does not get accepted, then pirate 2 will get all the gold and pirate 1 will get nothing. So he decides to bribe pirate 1 with one gold coin. Pirate 1 knows that one gold coin is better than nothing so he has to back pirate 3. Pirate 3 proposes {pirate 1, pirate 2, pirate 3} {1, 0, 99}. Since pirate 1 and 3 will vote for it, it will be accepted. If there are 4 pirates, pirate 4 needs to get one more pirate to vote for his proposal. Pirate 4 realizes that if he dies, pirate 2 will get nothing (according to the proposal with 3 pirates) so he can easily bribe pirate 2 with one gold coin to get his vote. So the distribution will be {0, 1, 0, 99}. Smart right? Now can you figure out the distribution with 5 pirates? Let's see. Pirate 5 needs 2 votes and he knows that if he dies, pirate 1 and 3 will get nothing. He can easily bribe pirates 1 and 3 with one gold coin each to get their vote. In the end, he proposes {1, 0, 1, 0, 98}. This proposal will get accepted and provide the maximum amount of gold to pirate 5.
73.25 %
76 votes
cleanlogicmathsimple

Create a number using only the digits 4,4,3,3,2,2,1 and 1. So I can only be eight digits. You have to make sure the ones are separated by one digit, the twos are separated by two digits the threes are separated with three digits and the fours are separated by four digits.
41312432.
73.23 %
115 votes
logiccleansimple

Six jugs are in a row. The first three are filled with coke, and the last three are empty. By moving only one glass, can you arrange them so that the full and the empty glasses alternate?
Move and then pour all coke from second glass to fifth glass.
73.22 %
67 votes
logicstorytricky

Frank and some of the boys were exchanging old war stories. James offered one about how his grandfather (Captain Smith) led a battalion against a German division during World War I. Through brilliant maneuvers he defeated them and captured valuable territory. Within a few months after the battle he was presented with a sword bearing the inscription: "To Captain Smith for Bravery, Daring and Leadership, World War One, from the Men of Battalion 8." Frank looked at James and said, "You really don't expect anyone to believe that yarn, do you?" What is wrong with the story?
It wasn't called World War One until much later. It was called the Great War at first, because they did not know during that war and immediately afterward that there would be a second World War (WW II).
73.20 %
102 votes
logicclean

You have twelve balls, identical in every way except that one of them weighs slightly less or more than the balls. You have a balance scale, and are allowed to do 3 weighings to determine which ball has the different weight, and whether the ball weighs more or less than the other balls. What process would you use to weigh the balls in order to figure out which ball weighs a different amount, and whether it weighs more or less than the other balls?
Take eight balls, and put four on one side of the scale, and four on the other. If the scale is balanced, that means the odd ball out is in the other 4 balls. Let's call these 4 balls O1, O2, O3, and O4. Take O1, O2, and O3 and put them on one side of the scale, and take 3 balls from the 8 "normal" balls that you originally weighed, and put them on the other side of the scale. If the O1, O2, and O3 balls are heavier, that means the odd ball out is among these, and is heavier. Weigh O1 and O2 against each other. If one of them is heavier than the other, this is the odd ball out, and it is heavier. Otherwise, O3 is the odd ball out, and it is heavier. If the O1, O2, and O3 balls are lighter, that means the odd ball out is among these, and is lighter. Weigh O1 and O2 against each other. If one of them is lighter than the other, this is the odd ball out, and it is lighter. Otherwise, O3 is the odd ball out, and it is lighter. If these two sets of 3 balls weigh the same amount, then O4 is the odd ball out. Weight it against one of the "normal" balls from the first weighing. If O4 is heavier, then it is heavier, if it's lighter, then it's lighter. If the scale isn't balanced, then the odd ball out is among these 8 balls. Let's call the four balls on the side of the scale that was heavier H1, H2, H3, and H4 ("H" for "maybe heavier"). Let's call the four balls on the side of the scale that was lighter L1, L2, L3, and L4 ("L" for "maybe lighter"). Let's also call each ball from the 4 in the original weighing that we know aren't the odd balls out "Normal" balls. So now weigh [H1, H2, L1] against [H3, L2, Normal]. -If the [H1, H2, L1] side is heavier (and thus the [H3, L2, Normal] side is lighter), then this means that either H1 or H2 is the odd ball out and is heavier, or L2 is the odd ball out and is lighter. -So measure [H1, L2] against 2 of the "Normal" balls. -If [H1, L2] are heavier, then H1 is the odd ball out, and is heavier. -If [H1, L2] are lighter, then L2 is the odd ball out, and is lighter. -If the scale is balanced, then H2 is the odd ball out, and is heavier. -If the [H1, H2, L1] side is lighter (and thus the [H3, L2, Normal] side is heavier), then this means that either L1 is the odd ball out, and is lighter, or H3 is the odd ball out, and is heavier. -So measure L1 and H3 against two "normal" balls. -If the [L1, H3] side is lighter, then L1 is the odd ball out, and is lighter. -Otherwise, if the [L1, H3] side is heavier, then H3 is the odd ball out, and is heavier. If the [H1, H2, L1] side and the [H3, L2, Normal] side weigh the same, then we know that either H4 is the odd ball out, and is heavier, or one of L3 or L4 is the odd ball out, and is lighter. So weight [H4, L3] against two of the "Normal" balls. If the [H4, L3] side is heavier, then H4 is the odd ball out, and is heavier. If the [H4, L3] side is lighter, then L3 is the odd ball out, and is lighter. If the [H4, L3] side weighs the same as the [Normal, Normal] side, then L4 is the odd ball out, and is lighter.
73.10 %
93 votes
logicsimpleinterview

Mr. Black, Mr. Gray, and Mr. White are fighting in a truel. They each get a gun and take turns shooting at each other until only one person is left. Mr. Black, who hits his shot 1/3 of the time, gets to shoot first. Mr. Gray, who hits his shot 2/3 of the time, gets to shoot next, assuming he is still alive. Mr. White, who hits his shot all the time, shoots next, assuming he is also alive. The cycle repeats. All three competitors know one another's shooting odds. If you are Mr. Black, where should you shoot first for the highest chance of survival?
He should shoot at the ground. If Mr. Black shoots the ground, it is Mr. Gray's turn. Mr. Gray would rather shoot at Mr. White than Mr. Black, because he is better. If Mr. Gray kills Mr. White, it is just Mr. Black and Mr. Gray left, giving Mr. Black a fair chance of winning. If Mr. Gray does not kill Mr. White, it is Mr. White's turn. He would rather shoot at Mr. Gray and will definitely kill him. Even though it is now Mr. Black against Mr. White, Mr. Black has a better chance of winning than before.
73.10 %
93 votes
logicmath

You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races. You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in. What is the least number of races you can conduct to figure out which 3 horses are fastest?
You need to conduct 7 races. First, separate the horses into 5 groups of 5 horses each, and race the horses in each of these groups. Let's call these groups A, B, C, D and E, and within each group let's label them in the order they finished. So for example, in group A, A1 finished 1st, A2 finished 2nd, A3 finished 3rd, and so on. We can rule out the bottom two finishers in each race (A4 and A5, B4 and B5, C4 and C5, D4 and D5, and E4 and E5), since we know of at least 3 horses that are faster than them (specifically, the horses that beat them in their respective races). This table shows our remaining horses: A1 B1 C1 D1 E1 A2 B2 C2 D2 E2 A3 B3 C3 D3 E3 For our 6th race, let's race the top finishers in each group: A1, B1, C1, D1 and E1. Let's assume that the order of finishers is: A1, B1, C1, D1, E1 (so A1 finished first, E1 finished last). We now know that horse D1 cannot be in the top 3, because it is slower than C1, B1 and A1 (it lost to them in the 6th race). Thus, D2 and D3 can also not be in the to 3 (since they are slower than D1). Similarly, E1, E2 and E3 cannot be in the top 3 because they are all slower than D1 (which we already know isn't in the top 3). Let's look at our updated table, having removed these horses that can't be in the top 3: A1 B1 C1 A2 B2 C2 A3 B3 C3 We can actually rule out a few more horses. C2 and C3 cannot be in the top 3 because they are both slower than C1 (and thus are also slower than B1 and A1). And B3 also can't be in the top 3 because it is slower than B2 and B1 (and thus is also slower than A1). So let's further update our table: A1 B1 C1 A2 B2 A3 We actually already know that A1 is our fastest horse (since it directly or indirectly beat all the remaining horses). So now we just need to find the other two fastest horses out of A2, A3, B1, B2 and C1. So for our 7th race, we simply race these 5 horses, and the top two finishers, plus A1, are our 3 fastest horses.
73.01 %
84 votes