Handel has been killed and Beethoven is on the case. He has interviewed the four suspects and their statements are shown below. Each suspect has said two sentences. One sentence of each suspect is a lie and one sentence is the truth. Help Beethoven figure out who the killer is.
Joplin: I did not kill Handel. Either Grieg is the killer or none of us is.
Grieg: I did not kill Handel. Gershwin is the killer.
Strauss: I did not kill Handel. Grieg is lying when he says Gershwin is the killer.
Gershwin: I did not kill Handel. If Joplin did not kill him, then Grieg did.
Who is the killer?

Strauss is the one who killed Handel. You need to take turns assuming someone is the killer; that means everyone's second sentence is a lie. If Joplin was the killer, Grieg's lie mixed with Strauss' counteracts the other. If Grieg was the killer, Gershwin would need to be a killer too. If Gershwin was the killer, Gershwin would need to be a killer too. If Gershwin was the killer, Grieg and Strauss counter each other again, but with Strauss, everything would fit in.

A farmer is travelling with a fox, a sheep and a small sack of hay. He comes to a river with a small boat in it. The boat can only support the farmer and one other animal/item. If the farmer leaves the fox alone with the sheep, the fox will eat the sheep. And if the farmer leaves the sheep alone with the hay, the sheep will eat the hay.
How can the farmer get all three as well as himself safely across the river?

The farmer takes the sheep across the river, then returns back.
The farmer takes the fox across the river.
The farmer takes the sheep back to the first side of the river.
The farmer leaves the sheep back on the first side of the river, and takes the hay to the other side.
The farmer returns to the first side of the river.
The farmer brings the sheep back to the second side.

Two Japanese people who have never seen each other meet at the New York Japanese Embassy. They decide to have drinks together at a nearby bar. One of them is the father of the other one's son. How is this possible?

The Japanese are husband and wife and both blind since birth.

Brad starred through the dirty soot-smeared window on the 22nd floor of the office tower. Overcome with depression he slid the window open and jumped through it. It was a sheer drop outside the building to the ground. Miraculously after he landed he was completely unhurt. Since there was nothing to cushion his fall or slow his descent, how could he have survived the fall?

Brad was so sick and tired of window washing, he opened the window and jumped inside.

There are several chickens and rabbits in a cage (with no other types of animals). There are 72 heads and 200 feet inside the cage. How many chickens are there, and how many rabbits?

There are 44 chickens and 28 rabbits in the cage.
Let c be the number of chickens, and r be the number of rabbits.
r + c = 72
4r + 2c = 200
To solve the equations, we multiply the first by two, then subtract the second.
2r + 2c = 144
2r = 56
r = 28
c = 44

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started.
It turns out there are an infinite number of different points on earth where you might be. Can you describe them all?
It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.

One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile.
To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes.
To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.