# Logic riddles

## A grandfather's clock

A grandfather's clock chimes the appropriate number of times to indicate the hour, as well as chiming once at each quarter hour. If you were in another room and hear the clock chime just once, what would be the longest period of time you would have to wait in order to be certain of the correct time?
You would have to wait 90 minutes between 12:15 and 1:45. Once you had heard seven single chimes, you would know that the next chime would be two chimes for 2 o'clock.
81.57 %

## What am I?

I am pronounced as a one letter alphabet. I am written with three letters. I am complete with just two letters. I am double. I am blue I am black I am brown I am gray I am yellow and I am green. I can read from both ends. I appear the same every way! What am I?
Eye.
81.57 %

## Monk on a Path

A monk leaves at sunrise and walks on a path from the front door of his monastery to the top of a nearby mountain. He arrives at the mountain summit exactly at sundown. The next day, he rises again at sunrise and descends down to his monastery, following the same path that he took up the mountain. Assuming sunrise and sunset occured at the same time on each of the two days, prove that the monk must have been at some spot on the path at the same exact time on both days.
Imagine that instead of the same monk walking down the mountain on the second day, that it was actually a different monk. Let's call the monk who walked up the mountain monk A, and the monk who walked down the mountain monk B. Now pretend that instead of walking down the mountain on the second day, monk B actually walked down the mountain on the first day (the same day monk A walks up the mountain). Monk A and monk B will walk past each other at some point on their walks. This moment when they cross paths is the time of day at which the actual monk was at the same point on both days. Because in the new scenario monk A and monk B MUST cross paths, this moment must exist.
81.57 %

## Say my name

Say my name and I disappear.
Silence.
81.55 %

## Pizza

How can you divide a pizza into 8 equal slices using only 3 straight cuts?
Cut 1: Cut the pizza straight down the middle into two halves. Cut 2: Keeping the two halves in the place, cut the pizza straight down the middle at right angles to the first cut (you will be left with 4 equal quarters) Cut 3: Pile the 4 quarters on top of each other and cut through the middle of the pile. You will be left with 8 equal slices.
81.55 %

If will follow you for 1000 miles but not miss home. It desires neither food nor flowers. It fears not water, fire, knives, nor soldiers. But it disappears when the sun sets behind the western mountains. Who Am I?
81.55 %
logic

## The Monty Hall Problem

On the game show et´s Make a Deal, Monty Hall shows you three doors. Behind one of the doors is a new car, the other two hide goats. You choose one door, perhaps #1. Now Monty shows you what´s behind door #2 and it´s a goat.He gives you the chance to stay with original pick or select door #3. What do you do?
You should always abandon your original choice in favor of the remaining door (#3). When you make your first choice the chance of winning is 1 in 3 or 33%. When you switch doors, you turn a 2 in 3 chance of losing in the first round into a 2 in 3 chance of winning in the second round. Search: Monty Hall problem
81.55 %

## Six rungs

A boat has a ladder that has six rungs, each rung is one foot apart. The bottom rung is one foot from the water. The tide rises at 12 inches every 15 minutes. High tide peaks in one hour. When the tide is at it's highest, how many rungs are under water?
None, the boat rises with the tide.
81.55 %

## Strange Miles

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
81.55 %