# Clean riddles

## Strange Miles

You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started. It turns out there are an infinite number of different points on earth where you might be. Can you describe them all? It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile. To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes. To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
78.61 %

## Money

If money really did grow on trees, what would be everyone’s favorite season?
Fall.
78.61 %

## Can be catched but not threw

What can you catch but not throw?
A cold.
78.59 %

## Two barbers

A man was in a small town for the day, and needed a haircut. He noticed that there were only two barbers in town, and decided to apply a bit of logical deduction to choosing the best one. Looking at their shops, he saw that the first one was very neat and the barber was clean shaven with a nice haircut. The other shop was a mess, and the barber there needed a shave and had a bad cut besides. Why did the man choose to go to the barber with the messy shop?
Since even barbers rarely try to cut their own hair, and there are only two barbers in town, they must cut each other's hair. The one with the neat hair must have it cut by the one with the bad haircut, who must then be better one, considering his own haircut.
78.59 %

## Three switches in a room

You are standing next to three switches. You know these switches belong to three bulbs in a room behind a closed door – the door is tight closed, and heavy which means that it's absolutely impossible to see if any bulb is on or not. All three switches are now in position off. You can do whatever you want with the switches and when you are finished you open the door and go into the room. While in there you have to tell which switch belongs to which bulb. How will you do that?
Turn on the first switch and wait for a while. Turn off the first one and turn on the second. Go into the room. One bulb is shining, the second bulb is hot and the third one nothing.
78.59 %

## Has hands but can not clap

What has hands but can not clap?
A clock.
78.59 %

## New York Hair

You are visiting NYC when a man approaches you. "Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you. "I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet. What did the man say to prove his case?
This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald. So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head. You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.
78.55 %

## Twin sisters

They are twin sisters, same height; they work in the kitchen, arm in arm. Whatever is cooked, they always try it first.
Chopsticks.
78.50 %

## 1000s of ribs

It has only two bones, but there are 1000s of ribs. What is that?
Railway track.
78.50 %