At a local bar, three friends, Mr. Green, Mr. Red and Mr. Blue, were having a drink. One man was wearing a red suit; one a green suit; and the other a blue suit.
"Have you noticed," said the man in the blue suit, "that although our suits have colors corresponding to our names, not one of us is wearing a suit that matches our own names?"
Mr. Red looked at the other two and said, "You're absolutely correct."
What color suit is each man wearing?

Since none of the men are wearing the color of suit that corresponds to their names, and Mr. Red was replying to the man in the blue suit, it had to be Mr. Green to whom he replied. We then know that Mr. Green is wearing a blue suit. Therefore, Mr. Red is wearing a green suit and Mr. Blue is wearing a red suit.

A man comes to a small hotel where he wishes to stay for 7 nights. He reaches into his pockets and realizes that he has no money, and the only item he has to offer is a gold chain, which consists of 7 rings connected in a row (not in a loop).
The hotel proprietor tells the man that it will cost 1 ring per night, which will add up to all 7 rings for the 7 nights.
"Ok," the man says. "I'll give you all 7 rings right now to pre-pay for my stay."
"No," the proprietor says. "I don't like to be in other people's debt, so I cannot accept all the rings up front."
"Alright," the man responds. "I'll wait until after the seventh night, and then give you all of the rings."
"No," the proprietor says again. "I don't like to ever be owed anything. You'll need to make sure you've paid me the exact correct amount after each night."
The man thinks for a minute, and then says "I'll just cut each of my rings off of the chain, and then give you one each night."
"I do not want cut rings," the proprietor says. "However, I'm willing to let you cut one of the rings if you must."
The man thinks for a few minutes and then figures out a way to abide by the proprietor's rules and stay the 7 nights in the hotel. What is his plan?

The man cuts the ring that is third away from the end of the chain. This leaves him with 3 smaller chains of length 1, 2, and 4. Then, he gives rings to the proprietor as follows:
After night 1, give the proprietor the single ring
After night 2, take the single ring back and give the proprietor the 2-ring chain
After night 3, give the proprietor the single ring, totalling 3 rings with the proprietor
After night 4, take back the single ring and the 2-ring chain, and give the proprietor the 4-ring chain
After night 5, give the proprietor the single ring, totalling 5 rings with the proprietor
After night 6, take back the single ring and give the proprietor the 2-ring chain, totalling 6 rings with the proprietor
After night 7, give the proprietor the single ring, totalling 7 rings with the proprietor

There are 100 ants on a board that is 1 meter long, each facing either left or right and walking at a pace of 1 meter per minute.
The board is so narrow that the ants cannot pass each other; when two ants walk into each other, they each instantly turn around and continue walking in the opposite direction. When an ant reaches the end of the board, it falls off the edge.
From the moment the ants start walking, what is the longest amount of time that could pass before all the ants have fallen off the plank? You can assume that each ant has infinitely small length.

The longest amount of time that could pass would be 1 minute.
If you were looking at the board from the side and could only see the silhouettes of the board and the ants, then when two ants walked into each other and turned around, it would look to you as if the ants had walked right by each other.
In fact, the effect of two ants walking into each other and then turning around is essentially the same as two ants walking past one another: we just have two ants at that point walking in opposite directions.
So we can treat the board as if the ants are walking past each other. In this case, the longest any ant can be on the board is 1 minute (since the board is 1 meter long and the ants walk at 1 meter per minute). Thus, after 1 minute, all the ants will be off the board.

Last week, the local Primary school was visited by the Government School Inspector who was there to check that teachers were performing well in their respective classes. He was very impressed with one particular teacher. The Inspector noticed that each time the class teacher asked a question, every child in the class put up their hands enthusiastically to answer it. More surprisingly, whilst the teacher chose a different child to answer the questions each time, the answers were always correct.
Why would this be?

The children were instructed to ALL raise their hands whenever a question was asked. It did not matter whether they knew the answer or not. If they did not know the answer, however, they would raise their LEFT hand. If they knew the answer, they would raise their RIGHT hand. The class teacher would choose a different child each time, but always the ones who had their RIGHT hand raised.

"Welcome back to the show. Before the break, Mr Ixolite here made it to our grand finale! How do you feel Mr.Ix?"
"Nervous."
"Okay, now to win the star prize of one million pounds all you have to do is answer the following question in 90 seconds."
"Okay, I'm ready."
"Right. In 90 seconds name 100 words that do NOT contain the letter 'A'. Start the clock!"
Can you help?

One, two, three, four, five...one hundred! I just counted from 1 to 100 in ninety seconds (it is possible).

How to measure exactly 4 gallon of water from 3 gallon and 5 gallon jars, given, you have unlimited water supply from a running tap.

Step 1. Fill 3 gallon jar with water. ( 5p – 0, 3p – 3)
Step 2. Pour all its water into 5 gallon jar. (5p – 3, 3p – 0)
Step 3. Fill 3 gallon jar again. ( 5p – 3, 3p – 3)
Step 4. Pour its water into 5 gallon jar untill it is full. Now you will have exactly 1 gallon water remaining in 3 gallon jar. (5p – 5, 3p – 1)
Step 5. Empty 5 gallon jar, pour 1 gallon water from 3 gallon jar into it. Now 5 gallon jar has exactly 1 gallon of water. (5p – 1, 3p – 0)
Step 6. Fill 3 gallon jar again and pour all its water into 5 gallon jar, thus 5 gallon jar will have exactly 4 gallon of water. (5p – 4, 3p – 0)

It was a very large truck. The truck need to cross a 20 mile long bridge. Unfortunately, the bridge can only hold the weight of 12000 lbs. Even a single pound extra, the bridge would collapse. However the weight of the truck is exactly 12000 lbs. The driver carefully drove and crossed almost 85 percent distance of the bridge. He stopped to get a small break. Suddenly, a bird landed on the truck. Did the bridge collapse? Justify your answers with explanation!

No. The bridge doesn't collapse. The truck almost crossed 85 percent of total distance. Equivalent diesel would have been lost. So the extra weight of the bridge doesn't add any extra load to the bridge.