Long hard clean riddles

cleanstorylogicclever

After recent events, Question Mark is annoyed with his brother, Skid Mark. Skid thought it would be funny to hide Question's wallet. He told Question that he would get it back if he finds it. So, first off, Skid laid five colored keys in a row. One of them is a key to a room where Skid is hiding Question's wallet. Using the clues, can you determine the order of the keys and which is the right key? Red: This key is somewhere to the left of the key to the door. Blue: This key is not at one of the ends. Green: This key is three spaces away from the key to the door (2 between). Yellow: This key is next to the key to the door. Orange: This key is in the middle.
The order (from left to right) is Green, Red, Orange, Blue, Yellow. The blue key is the key to the door.
72.35 %
107 votes
logicstoryclean

A man comes to a small hotel where he wishes to stay for 7 nights. He reaches into his pockets and realizes that he has no money, and the only item he has to offer is a gold chain, which consists of 7 rings connected in a row (not in a loop). The hotel proprietor tells the man that it will cost 1 ring per night, which will add up to all 7 rings for the 7 nights. "Ok," the man says. "I'll give you all 7 rings right now to pre-pay for my stay." "No," the proprietor says. "I don't like to be in other people's debt, so I cannot accept all the rings up front." "Alright," the man responds. "I'll wait until after the seventh night, and then give you all of the rings." "No," the proprietor says again. "I don't like to ever be owed anything. You'll need to make sure you've paid me the exact correct amount after each night." The man thinks for a minute, and then says "I'll just cut each of my rings off of the chain, and then give you one each night." "I do not want cut rings," the proprietor says. "However, I'm willing to let you cut one of the rings if you must." The man thinks for a few minutes and then figures out a way to abide by the proprietor's rules and stay the 7 nights in the hotel. What is his plan?
The man cuts the ring that is third away from the end of the chain. This leaves him with 3 smaller chains of length 1, 2, and 4. Then, he gives rings to the proprietor as follows: After night 1, give the proprietor the single ring After night 2, take the single ring back and give the proprietor the 2-ring chain After night 3, give the proprietor the single ring, totalling 3 rings with the proprietor After night 4, take back the single ring and the 2-ring chain, and give the proprietor the 4-ring chain After night 5, give the proprietor the single ring, totalling 5 rings with the proprietor After night 6, take back the single ring and give the proprietor the 2-ring chain, totalling 6 rings with the proprietor After night 7, give the proprietor the single ring, totalling 7 rings with the proprietor
72.32 %
86 votes
cleanlogicmath

Mick and John were in a 100 meter race. When Mick crossed the finish line, John was only at the 90 meter mark. Mick suggested they run another race. This time, Mick would start ten meters behind the starting line. All other things being equal, will John win, lose, or will it be a tie in the second race?
John will lose again. In the second race, Mick started ten meters back. By the time John reaches the 90 meter mark, Mick will have caught up him. Therefore, the final ten meters will belong to the faster of the two. Since Mick is faster than John, he will win the final 10 meters and of course the race.
72.22 %
73 votes
cleanlogicsimple

Find words to fit the clues, all the words end in the same three letters. _ _ _ _ _ _ Eat quickly _ _ _ _ _ _ Unverified story _ _ _ _ _ _ _ An outline
Devour, rumour and contour.
72.05 %
64 votes
logicsimplecleanstory

Jack and Joe were on vacation and driving along a deserted country road from the town of Kaysville to the town of Lynnsville. They came to a multiple fork in the road. The sign post had been knocked down and they were faced with choosing one of five different directions. Since they had left their map at the last gas station and there was no one around to ask, how could Jack and Joe find their way to Lynnsville?
They need to stand the signpost up so that the arm reading Kaysville points in the direction of Kaysville, the town they had just come from. With one arm pointing the correct way, the other arms will also point in the right directions.
71.93 %
93 votes
cleanlogicclever

You have two lengths of rope. Each rope has the property that if you light it on fire at one end, it will take exactly 60 minutes to burn to the other end. Note that the ropes will not burn at a consistent speed the entire time (for example, it's possible that the first 90% of a rope will burn in 1 minute, and the last 10% will take the additional 59 minutes to burn). Given these two ropes and a matchbook, can you find a way to measure out exactly 45 minutes?
The key observation here is that if you light a rope from both ends at the same time, it will burn in 1/2 the time it would have burned in if you had lit it on just one end. Using this insight, you would light both ends of one rope, and one end of the other rope, all at the same time. The rope you lit at both ends will finish burning in 30 minutes. Once this happens, light the second end of the second rope. It will burn for another 15 minutes (since it would have burned for 30 more minutes without lighting the second end), completing the 45 minutes.
71.83 %
109 votes
logicmathcleanclever

You are on a gameshow and the host shows you three doors. Behind one door is a suitcase with $1 million in it, and behind the other two doors are sacks of coal. The host tells you to choose a door, and that the prize behind that door will be yours to keep. You point to one of the three doors. The host says, "Before we open the door you pointed to, I am going to open one of the other doors." He points to one of the other doors, and it swings open, revealing a sack of coal behind it. "Now I will give you a choice," the host tells you. "You can either stick with the door you originally chose, or you can choose to switch to the other unopened door." Should you switch doors, stick with your original choice, or does it not matter?
You should switch doors. There are 3 possibilities for the first door you picked: You picked the first wrong door - so if you switch, you win You picked the other wrong door - again, if you switch, you win You picked the correct door - if you switch, you lose Each of these cases are equally likely. So if you switch, there is a 2/3 chance that you will win (because there is a 2/3 chance that you are in one of the first two cases listed above), and a 1/3 chance you'll lose. So switching is a good idea. Another way to look at this is to imagine that you're on a similar game show, except with 100 doors. 99 of those doors have coal behind them, 1 has the money. The host tells you to pick a door, and you point to one, knowing almost certainly that you did not pick the correct one (there's only a 1 in 100 chance). Then the host opens 98 other doors, leave only the door you picked and one other door closed. We know that the host was forced to leave the door with money behind it closed, so it is almost definitely the door we did not pick initially, and we would be wise to switch. Search: Monty Hall problem
71.80 %
76 votes
logicsimpleclean

Jay escaped from jail and headed to the country. While walking along a rural road, he saw a police car speeding towards him. Jay ran toward it for a short time and then fled into the woods. Why did he run toward the car?
Jay was just starting to cross a bridge when he saw a police car. He ran toward the car to get off the bridge before running into the woods.
71.64 %
63 votes
logiccleanclevermath

At a dinner party, many of the guests exchange greetings by shaking hands with each other while they wait for the host to finish cooking. After all this handshaking, the host, who didn't take part in or see any of the handshaking, gets everybody's attention and says: "I know for a fact that at least two people at this party shook the same number of other people's hands." How could the host know this? Note that nobody shakes his or her own hand.
Assume there are N people at the party. Note that the least number of people that someone could shake hands with is 0, and the most someone could shake hands with is N-1 (which would mean that they shook hands with every other person). Now, if everyone at the party really were to have shaken hands with a different number of people, then that means somone must have shaken hands with 0 people, someone must have shaken hands with 1 person, and so on, all the way up to someone who must have shaken hands with N-1 people. This is the only possible scenario, since there are N people at the party and N different numbers of possible people to shake hands with (all the numbers between 0 and N-1 inclusive). But this situation isn't possible, because there can't be both a person who shook hands with 0 people (call him Person 0) and a person who shook hands with N-1 people (call him Person N-1). This is because Person 0 shook hands with nobody (and thus didn't shake hands with Person N-1), but Person N-1 shook hands with everybody (and thus did shake hands with Person 0). This is clearly a contradiction, and thus two of the people at the party must have shaken hands with the same number of people. Pretend there were only 2 guests at the party. Then try 3, and 4, and so on. This should help you think about the problem. Search: Pigeonhole principle
71.64 %
63 votes
logicmathcleanclever

On the first day they cover one quarter of the total distance. The next day they cover one quarter of what is left. The following day they cover two fifths of the remainder and on the fourth day half of the remaining distance. The group now have 14 miles left, how many miles have they walked?
68.962962 miles
71.45 %
75 votes